Cho x-y=9 Giá trị của biểu thức B=\(\frac{\text{4x-9}}{\text{3x+y}}-\frac{\text{4x+y}}{\text{3y-x}}\) (với x khác -3y;y khác -3x) ) là _________????
Ai biết thì viết luôn cả cách làm giúp mình nhé!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho x-y=9 => x=9+y thay vào B ta được:
B=4(9+y)-9/3(9+y)+y - 4y+9/3y+9+y
B= 36+4y-9/27+4y - 4y+9/4y+9
B= 37+4y/27+4y - 4y+9/4y+9
B= 1-1
B=0
B=(4x-9)/(3x+y)-(4y+9)/(3y+x)
= [4x-(x-y)]/(3x+y) - [4y+(x-y)]/(3y+x)
= (4x-x+y)/(3x+y) - (4y+x-y)/(3y+x)
= (3x+y)/(3x+y) - (3y+x)/(3y+x)
= 1 - 1 = 0
x - y = 9 => x = 9 + y thay vào B ta được :
\(B=\frac{4\left(9+y\right)-9}{3\left(9+y\right)+y}-\frac{4y+9}{3y+9+y}=\frac{36+4y-9}{27+3y+y}-\frac{4y+9}{4y+9}=\frac{27+4y}{27+4y}-\frac{4y+9}{4y+9}=1-1=0\)
Vậy B = 0