K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2018

a) Chứng minh: 

  I A H ^ = I H A ^ , H A K ^ = A H K ^ ⇒ I H A ^ + A H K ^ = 90 0 ⇒ I H K ^ = 90 0

b) Chú ý: Sử dụng tính chất đường trung bình của tam giác và sử dụng.

c) HS tự chứng minh

22 tháng 10 2021

a: Ta có: ΔAHB vuông tại H 

mà HI là đường trung tuyến

nên HI=AI

Ta có: ΔAHC vuông tại H 

mà HK là đường trung tuyến

nên HK=AK

Xét ΔKAI và ΔKHI có

KA=KH

IA=IH

KI chung

Do đó: ΔKAI=ΔKHI

Suy ra: \(\widehat{IHK}=90^0\)

23 tháng 10 2021

a) Ta có: ΔAHB vuông tại H (gt)

mà HI là đường trung tuyến (gt)

nên HI=AI

Ta có: ΔAHC vuông tại H 

mà HK là đường trung tuyến

nên HK=AK

Xét ΔKAI và ΔKHI có

KA=KH

IA=IH

KI chung

Do đó: ΔKAI=ΔKHI

Suy ra: ˆIHK=900

b) Bạn sẽ chứng minh mỗi cạnh của tam giác IHK bằng nửa cạnh của tam giác ABC:

có I là trung điểm AB 

=> IA=IB= 1/2 AB (1)

có K là trung điểm AC 

=> KA=KC = 1/2 AC (2) 

xét tam giác ABC => IK là đường trung bình (tự cm) 

=> IK= 1/2 BC (tính chất) (3) 

Từ (1)(2)(3) => IH + HK + IK = 1/2AB+1/2AC +1/2BC 

==> Vậy cvi của tam giác IHK bằng một nửa cvi tam giác ABC 

===== 

studie.hard.today

1. Cho tam giác ABC , đường cao AH . Gọi I là trung điểm của AC . Lấy D là điểm đối xứng vớiH qua I . Chứng minh tứ giác AHCD là hình chữ nhật.2. Cho tam giác ABC vuông tại A, đường cao AH . Gọi I , K theo thứ tự là trung điểm của AB ,AC . Chứng minh:a) IHK � 90� � ; b) Chu vi �IHK bằng nửa chu vi �ABC .3. Tìm x trong hình vẽ bên, Biết AB �13 cm, BC �15 cm, AD �10cm.4. Cho tứ giác ABCD có hai đường chéo vuông góc...
Đọc tiếp

1. Cho tam giác ABC , đường cao AH . Gọi I là trung điểm của AC . Lấy D là điểm đối xứng với
H qua I . Chứng minh tứ giác AHCD là hình chữ nhật.
2. Cho tam giác ABC vuông tại A, đường cao AH . Gọi I , K theo thứ tự là trung điểm của AB ,
AC . Chứng minh:
a) IHK � 90� � ; b) Chu vi �IHK bằng nửa chu vi �ABC .
3. Tìm x trong hình vẽ bên, Biết AB �13 cm, BC �15 cm, AD �10
cm.

4. Cho tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi E , F , G , H theo thứ tự là
trung điểm của các cạnh AB , BC , CD, DA . Chứng minh tứ giác HEFG là hình chữ nhật.
5. Cho hình thang cân ABCD ( AB CD � , AB CD � ). Gọi M , N , P , Q lần lượt là trung điểm
các đoạn thẳng AD , BD , AC , BC .
a) Chứng minh bốn điểm M , N , P , Q thẳng hàng;

b) Chứng minh tứ giác ABPN là hình thang cân;
c) Tìm một hệ thức liên hệ giữa AB và CD để ABPN là hình chữ nhật.
6. Cho tam giác ABC có đường cao AI . Từ A kẻ tia Ax vuông góc với AC , từ B kẻ tia By
song song với AC . Gọi M là giao điểm của tia Ax và tia By . Nối M với trung điểm P của AB ,
đường MP cắt AC tại Q và BQ cắt AI tại H .
a) Tứ giác AMBQ là hình gì? b) Chứng minh tam giác PIQ cân.
7. Cho tam giác ABC . Gọi O là một điểm thuộc miền trong của tam giác. M ,
N , P , Q lần lượt là trung điểm của các đoạn thẳng OB , OC , AC , AB .
a) Chứng minh tứ giác MNPQ là hình bình hành;
b) Xác định vị trí của điểm O để tứ giác MNPQ là hình chữ nhật.

1

Bài 1: 

Xét tứ giác AHCD có 

I là trung điểm của đường chéo AC

I là trung điểm của đường chéo HD

Do đó: AHCD là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên AHCD là hình chữ nhật

26 tháng 12 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Tam giác BDH vuông tại D có DI là đường trung tuyến thuộc cạnh huyền BH

⇒ DI = IB = 1/2 BH (tính chất tam giác vuông)

⇒ ∆ IDB cân tại I ⇒ ∠ (DIB) = 180 0  - 2. ∠ B (1)

Tam giác HEC vuông tại E có EK là đường trung tuyến thuộc cạnh huyền HC.

⇒ EK = KH = 1/2 HC (tính chất tam giác vuông) .

⇒  ∆ KHE cân tại K ⇒  ∠ (EKH) =  180 0 - 2. ∠ (KHE) (2)

Tứ giác ADHE là hình chữ nhật nên:

HE // AD hay HE // AB ⇒  ∠ B =  ∠ (KHE) (đồng vị)

Từ (1), (2) và (3) suy ra:  ∠ (DIB) =  ∠ (EKH)

Vậy DI // EK (vì có cặp góc đồng vị bằng nhau).

a: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

=>AH=DE và AH cắt DE tại trung điểm của mỗi đường

=>O là trung điểm chung của AH và DE

b: ΔHDB vuông tại D có DI là trung tuyến

nên DI=HI=IB

Xét ΔIDO và ΔIHO có

ID=IH

DO=HO

IO chung

=>ΔIHO=ΔIDO

c: góc IDE=góc IDH+góc EDH

=góc IHD+góc EAH

=góc HAC+góc HCA=90 độ

=>ID vuông góc DE

góc KED=góc KEH+góc DEH

=góc KHE+góc DAH

=góc HAB+góc HBA=90 độ

=>KE vuông góc ED

=>ID//KE

=>DIKE là hình thang

a: Xét tứ giác ADHE có 

\(\widehat{EAD}=\widehat{AEH}=\widehat{ADH}=90^0\)

Do đó: ADHE là hình chữ nhật

Suy ra: AH=DE

24 tháng 10 2018

Gọi O là giao điểm của AH và IK, N là giao điểm của AM và IK. Ta có 

MAK = MCK, OKA = OAK nên

MAK + OKA = MCK + OAK = 90 độ

Do đó AM vuông góc IK

18 tháng 11 2018

bạn ơi bạn làm như giải ý 

30 tháng 6 2017

Hình chữ nhật

11 tháng 12 2021

cho tam giác ABC vuông tại A đường cao AH ( H thuộc cạnh BC) .gọi D, E theo thứ tự chân đường vuông góc kẻ từ H đến AB và AC .Gọi M, N theo thứ tự là trung điểm của BH và CH .Gọi I là giao điểm của AH và ED 

1: cm tam giác DHE là tam giác vuông.Biết AB=3,AC=4, tính 

a: bán kính của đường tròn ngoại tiếp tam giác DHE 

b: cos ACH

2: cm ED là tiếp tuyến của đường tròn đg kính CH

3: cm I thuộc đg tròn đg kính Mn