K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2019

Đường thẳng d đi qua M(-2; 1; 1) có vecto chỉ phương là  a → (−1; 4; −1)

Đường thẳng d’ đi qua N(-1; -3; 2) có vecto chỉ phương là  b →  (1; 4; −3)

Suy ra:  a → ∧   b →  = (−8; −4; −8) ≠   0 →

Ta có:  MN → (1; −4; 1) nên  MN → .( a →    b → ) = 0 do đó hai đường thẳng d và d’ cắt nhau.

Khi đó (P) là mặt phẳng đi qua M(-2; 1; 1) và có  n P →  = (2; 1; 2)

Phương trình của (P) là : 2(x + 2) + (y – 1) + 2(z – 1) = 0 hay 2x + y + 2z + 1 = 0.

11 tháng 1 2017

Đường thẳng d đi qua M(-2; 1; 1) có vecto chỉ phương là  a →  (−1; 4; −1)

Đường thẳng d1 đi qua N(1; 1; 1) có vecto chỉ phương là  b →  (1; 4; −3)

Ta có:  MN →  (3; 0; 0);  a → ∧   b → = (−8; −4; −8) nên  MN → ( a →   b → ) ≠ 0, suy ra d và d 1  chéo nhau. Do đó (P) là mặt phẳng đi qua M(-2; 1; 1) có vecto pháp tuyến bằng  a →   ∧   b →

Phương trình của (P) là: –8(x + 2) – 4(y – 1) – 8(z – 1) = 0 hay 2x + y + 2z + 1 = 0

15 tháng 6 2019

Đáp án A

Đường thẳng  d 1 đi qua A(1; 1; 1), vecto chỉ phương  u 1 → (1; 0; -1)

Đường thẳng  d 2  đi qua B( 0; 2;1), vecto chỉ phương  u 2 → (-1; 1; 0)

Mặt phẳng (P) chứa hai đường thẳng  d 1 ;  d 2  nên nhận vecto [ u 1 → ; u 2 → ] = (1;1;1) làm vecto pháp tuyến và đi qua A(1;1;1). Phương trình (P):

1(x - 1) + 1(y – 1) + 1(z - 1) = 0 hay x + y + z – 3= 0

Chọn A.

22 tháng 5 2017

Ôn tập chương III

NV
28 tháng 1 2021

a.

Chọn \(C\left(1;1;1\right)\) là 1 điểm thuộc denta

\(\Rightarrow\overrightarrow{AC}=\left(0;-1;4\right)\)

Đường thẳng denta có \(\overrightarrow{u_{\Delta}}=\left(2;-1;1\right)\) là 1 vtcp

\(\Rightarrow\left[\overrightarrow{AC};\overrightarrow{u_{\Delta}}\right]=\left(3;8;2\right)\)

\(\Rightarrow\left(Q\right)\) nhận \(\left(3;8;2\right)\) là 1 vtpt

Phương trình (Q):

\(3\left(x-1\right)+8\left(y-2\right)+2\left(y+3\right)=0\)

b.

Mặt phẳng (P) nhận \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) là 1 vtpt

Ta có: \(\left[\overrightarrow{u_{\Delta}};\overrightarrow{n_{\left(P\right)}}\right]=\left(-2;-1;3\right)\)

Mặt phẳng (Q) nhận (2;1;-3) là 1 vtpt

Phương trình (Q):

\(2\left(x-1\right)+1\left(y-2\right)-3\left(z+3\right)=0\)

NV
28 tháng 1 2021

c.

Gọi M là giao điểm denta và (P) thì tọa độ M thỏa:

\(-1+2t+2-t+t-3=0\Rightarrow t=1\)

\(\Rightarrow M\left(1;1;1\right)\)

\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{u_{\Delta}}\right]=\left(2;1;-3\right)\)

Đường thẳng d nhận (2;1;-3) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+2t\\y=1+t\\z=1-3t\end{matrix}\right.\)

d.

Do M thuộc denta nên tọa độ có dạng: \(M\left(-1+2t;2-t;t\right)\)

M là trung điểm AN \(\Rightarrow N\left(-3+4t;2-2t;2t+3\right)\)

N thuộc (P) nên: \(-3+4t+2-2t+2t+3-3=0\Rightarrow t=\dfrac{1}{4}\)

\(\Rightarrow\overrightarrow{MN}=\left(-2+2t;-t;t+3\right)=\left(-\dfrac{3}{2};-\dfrac{1}{4};\dfrac{13}{4}\right)=-\dfrac{1}{4}\left(6;1;13\right)\)

Phương trình d: \(\left\{{}\begin{matrix}x=1+6t\\y=2+t\\z=-3+13t\end{matrix}\right.\)

26 tháng 10 2018

Đường thẳng d đi qua M(-2; 1; 1) có vecto chỉ phương  a → (−1; 4; −1)

Ta có:  MI → (1; −2; 0), chọn  n P →  =  MI →   a →  = (2; 1; 2)

Phương trình của (P) là: 2(x + 2) + (y – 1) + 2(z – 1) = 0 hay 2x + y + 2z + 1 = 0

21 tháng 2 2017

(β) vuông góc với d

⇒ (β) nhận vtcp của d Giải bài 6 trang 92 sgk Hình học 12 | Để học tốt Toán 12 là 1 vtpt.

(β) đi qua M(0; 0; -2)

⇒ (β): 4x + 3y + z + 2 = 0.

9 tháng 8 2018

Chọn B

Mặt cầu (S) có tâm I (3;1;0) và bán kính là R = 2.

Gọi H (1+2t;-1+t;-t) là hình chiếu của I trên d.

Gọi (Q) là mặt phẳng chứa d.

Bán kính đường tròn giao tuyến của mặt phẳng chứa d và mặt cầu (S) là , suy ra r nhỏ nhất khi d (I, (Q)) lớn nhất.

Gọi M là hình chiếu của I trên (Q).

Ta có d (I, (Q)) = IM IH  suy ra d (I, (Q)) lớn nhất khi d (I, (Q)) = IH, lúc đó mặt phẳng (Q) qua H (3;0;-1) và có một véc tơ pháp tuyến là 

Phương trình mặt phẳng (Q): y+z+1=0.

30 tháng 10 2019

Đáp án D.

Ta dễ thấy hai đường thẳng d và d '  song song.

Hai đường thẳng d và   d ' lần lượt đi qua hai điểm M 5 ; 1 ; 5  và N 3 ; − 3 ; 1  và có vtcp u → = 2 ; − 1 ; 1 . Ta có  M N → = − 2 ; − 4 ; − 4   .

Hai vecto   M N →   u → không cùng phương và có giá nằm trên mặt phẳng P  nên ta có vtpt của mặt phẳng P  là n → = M N → ; u → .

Ta tìm tọa độ của n →  bằng MTCT:

⇒ n → = − 8 ; − 6 ; 10

 

Mặt phẳng P  có vtpt   n → = − 8 ; − 6 ; 10 và đi qua M 5 ; 1 ; 5  nên có phương trình P : − 8 x − 5 − 6 y − 1 + 10 z − 5 = 0   ⇔ P : 4 x + 3 y − 5 z + 2 = 0 .Ta chọn D.

22 tháng 5 2017

Ôn tập chương III