K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

\(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{1}{x^2+2x-3}=1.\)

\(ĐK:\hept{\begin{cases}x-1\ne0\\x+3\ne\\x^2+2x-3\ne0\end{cases}0}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne\Leftrightarrow-3\end{cases}}\)

\(\Leftrightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)+4-x^2-2x+3=0\)

\(\Leftrightarrow3x^2+9x-x-3-2x^2+2x-5x+5+4-x^2-2x+3=0\)

\(\Leftrightarrow3x+9=0\)

\(\Leftrightarrow3x=-9\Leftrightarrow x=-3\) (loại)

 Vậy pt vô No

5 tháng 7 2018

Số t tính đc rất thú dị :) 

23 tháng 3 2020
https://i.imgur.com/q2TMREU.jpg
13 tháng 1 2020

bạn lập bảng xét dấu nhé

26 tháng 12 2019

1) ta có: \(x^2\le\left|1-\frac{2}{x^2}\right|\)                            ( *)

+ nếu \(x^2\ge2\)

từ (*) \(\Rightarrow x^2\le1-\frac{2}{x^2}\)

\(\Leftrightarrow x^2-1+\frac{2}{x^2}\le0\)

\(\Rightarrow x^4-x^2+2\le0\)         (vì \(x^2\ge0\))

\(\Leftrightarrow\left(x^2-\frac{1}{4}\right)^2+\frac{7}{4}\le0\)  ( vô lý )

+ nếu \(x^2\le2\)

tứ (*) \(\Rightarrow x^2\le\frac{2}{x^2}-1\)

\(\Leftrightarrow x^2-\frac{2}{x^2}+1\le0\)

\(\Rightarrow x^4-2+x^2\le0\)        (vì \(x^2\ge0\))

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+2\right)\le0\)

\(\Leftrightarrow x^2-1\le0\)      ( vì \(x^2+2\)> 0 )

\(\Leftrightarrow x^2\le1\)

\(\Leftrightarrow-1\le x\le1\)

Vậy: \(-1\le x\le1\)

26 tháng 12 2019

Ta có : \(\frac{\left|x^2-4x\right|+3}{x^2+\left|x-5\right|}\ge1\)

\(\Leftrightarrow\left|x^2-4x\right|+3\ge x^2+\left|x-5\right|\)

\(\Leftrightarrow\left|x^2-4x\right|+3-x^2-\left|x-5\right|\ge0\)   (1)

+ nếu x= 0. từ pt (1) => 3 \(\ge\)0 ( đúng )

+ nếu x < 4 và x \(\ne\)0.

từ pt (1) => 4x - x2  + 3 - x2 - ( 5 - x ) \(\ge\)0

\(\Leftrightarrow-2x^2+5x-2\ge0\)

\(\Leftrightarrow2x^2-5x+2\le0\)

\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)\le0\)

\(\orbr{\begin{cases}\hept{\begin{cases}x-2\ge0\\2x-1\le0\end{cases}}\\\hept{\begin{cases}x-2\le0\\2x-1\ge0\end{cases}}\end{cases}}\)   TH 1: 

\(\hept{\begin{cases}x-2\ge0\\2x-1\le0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge2\\x\le\frac{1}{2}\end{cases}}\)( vô lý ) 

    TH 2:

\(\hept{\begin{cases}x-2\le0\\2x-1\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\le2\\x\ge\frac{1}{2}\end{cases}}\)\(\Leftrightarrow\)\(\frac{1}{2}\le x\le2\)  ( thỏa mãn x< 4 )

+ nếu \(4\le x< 5\)

từ pt (1) => x2 - 4x + 3 - x- ( 5 - x ) \(\ge0\)

\(\Leftrightarrow-3x-2\ge0\)

\(\Leftrightarrow3x+2\le0\)

\(\Leftrightarrow x\le-\frac{2}{3}\)( không thỏa man \(4\le x< 5\))

+ nếu \(x\ge5\)

từ pt (1) => x2 - 4x + 3 - x2 - ( x -5 ) \(\ge\)0

\(\Leftrightarrow-5x+8\ge0\)

\(\Leftrightarrow5x\le8\)
\(\Leftrightarrow x\le\frac{8}{5}\)  ( không thỏa mãn \(x\ge5\))

vậy: bpt có nghiệm là \(\frac{1}{2}\le x\le2\)

20 tháng 4 2017

a)\(\frac{3x-2}{5}\ge\frac{x}{2}+0,8\) va \(1-\frac{2x-5}{6}>\frac{3-x}{4}\)

 \(\cdot\frac{3x-2}{5}\ge\frac{x}{2}+0,8\)

  \(=\frac{2\left(3x-2\right)}{10}\ge\frac{5x}{10}+\frac{8}{10}\)

   \(\Rightarrow2\left(3x-2\right)\ge5x+8\)

   \(=6x-4\ge5x+8\)

   \(=6x-5x\ge8+4\)

    \(x\ge12\)(1)

\(\cdot1-\frac{2x-5}{6}>\frac{3-x}{4}\)

 \(=\frac{12}{12}-\frac{2\left(2x-5\right)}{12}>\frac{3\left(3-x\right)}{12}\)

  \(\Rightarrow12-2\left(2x-5\right)>3\left(3-x\right)\)

  \(=12-4x+10>9-3x\)

  \(=-4x+3x>9-12-10\)

   \(=-x>-13\)

    \(=x< 13\) (2)

Từ (1) và (2) => \(13>x\ge12\)=> x=12

NV
23 tháng 2 2020

ĐKXĐ: \(-2\le x\le3\)

Do trên \(\left[-2;3\right]\) cả \(2x+5\)\(x+4\) đều dương nên BPT tương đương:

\(\frac{1}{2x+5}\le\frac{1}{x+4}\Leftrightarrow x+4\le2x+5\Leftrightarrow x\ge-1\)

Vậy nghiệm của BPT là \(\left[{}\begin{matrix}x=-2\\-1\le x\le3\end{matrix}\right.\)

13 tháng 9 2020

Xin phép bỏ biểu diễn trên trục :))

a) \(2x-1< 2\left(x-1\right)\)

\(\Leftrightarrow2x-1< 2x-2\)

\(\Leftrightarrow2x-2x< 1-2\)

\(0x< -1\)( vô lí )

Vậy bất phương trình vô nghiệm.

b) \(\frac{x-1}{3}-\frac{2+3x}{4}>\frac{1}{6}\)

\(\Leftrightarrow\frac{4\left(x-1\right)-3\left(2+3x\right)}{12}>\frac{2}{12}\)

\(\Leftrightarrow4x-4-6-9x>2\)

\(\Leftrightarrow-5x-10>2\)

\(\Leftrightarrow-5x>12\)

\(\Leftrightarrow x< \frac{-12}{5}\)

Vậy...........

NV
3 tháng 4 2020

a/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\x\ne\left\{3;11\right\}\end{matrix}\right.\)

Đặt \(\sqrt{x-2}=t\ge0\)

\(\Rightarrow\frac{3}{t-1}\ge\frac{5}{t-3}\)

\(\Leftrightarrow\frac{3}{t-1}-\frac{5}{t-3}\ge0\)

\(\Leftrightarrow\frac{3t-9-5t+5}{\left(t-1\right)\left(t-3\right)}\ge0\)

\(\Leftrightarrow\frac{-2t-4}{\left(t-1\right)\left(t-3\right)}\ge0\)

\(\Leftrightarrow\frac{t+2}{\left(t-1\right)\left(t-3\right)}\le0\)

\(\Leftrightarrow1< t< 3\)

\(\Rightarrow1< \sqrt{x-2}< 3\)

\(\Leftrightarrow1< x-2< 9\Rightarrow3< x< 11\)

NV
3 tháng 4 2020

b/

ĐKXĐ: \(x\ge3\)

- Với \(x=3\) BPT thỏa mãn

- Với \(x>3\Rightarrow\sqrt{x-3}>0\) BPT tương đương

\(x-\frac{1}{2-x}\le0\Leftrightarrow x+\frac{1}{x-2}\le0\)

\(\Leftrightarrow\frac{x^2-2x+1}{x-2}\le0\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{x-2}\le0\Rightarrow\) không tồn tại x thỏa mãn

Vậy BPT có nghiệm duy nhất \(x=3\)