Cho tam giác DEF cân tại D với đường trung tuyến DI.
Các góc DIE và góc DIF là những góc gì?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
XÉT tam giác ΔDEI và ΔDFI có:
DE = DF (TAM GIÁC CÂN)
EI = FI (ĐƯỜNG TRUNG TUYẾN)
DI LÀ CẠNH CHUNG
==> ΔDEI = ΔDFI ( C.G.C )
a) Tam giác DEI và DFI có
DE = DF (gt)
EI = FI (gt)
DI chung
=> Tam giác DEI = tam giác DFI (trường hợp bằng nhau C-C-C)
b) Theo câu a, Tam giác DEI = tam giác DFI => góc DIE = góc DFI
Vì EIF thẳng hàng => góc DIE + góc DFI = 1800 , mà 2 góc này bằng nhau
=> góc DIE = góc DFI = 180o /2 = 90o (góc vuông)
c) EF = 10 => EI = 10/2 = 5
Xét tam giác DIE vuông ở I:
DI2 + EI2 = DE2 (Định lý Pitago)
DI2 + 52 = 132
DI2 = 169 - 25 =144 = 122
=> DI = 12 cm
a: Xét ΔDEI và ΔDFI có
DE=DF
EI=FI
DI chung
=>ΔDEI=ΔDFI
b: ΔDEI=ΔDFI
=>góc DIE=góc DIF=180/2=90 độ
=>góc DIE và góc DIF là những góc vuông
c: EI=FI=10/2=5cm
=>DE=căn 5^2+12^2=13cm
xét ΔDIE và ΔDIF có :
\(DB=DE\left(gt\right)\\ \widehat{DEI}=\widehat{DFI}\left(tgD\text{EF}c\text{â}nt\text{ại}D\right)\\ DI:chung\)
=> ΔDIE = ΔDIF (c.g.c )
=> góc DIE = góc DFI ( 2 góc t.ư)
có tg DEF cân tại D , đường trung tuyến DI
=> DI là đường trung trực
=> \(\widehat{DIE}=\widehat{D\text{IF}}=\dfrac{180^O}{2}=90^O\)
=> 2 GÓC là góc vuông
C) có tg DIE = tg DIF (cmt)
=> EI = FI ( 2 CẠNH t/ư)
=> EI = FI =1/2EF = 10:2 = 5 cm
có DEI là tg vuông tại I ( I là đường trung trực của tg DEF )
ADĐL P-T-G vào tg vuông DIE ta có
\(EI^2+ID^2=DE^2\\
\Leftrightarrow DE^2=12^2+5^2\\
\Leftrightarrow DE^2=169\\
\Leftrightarrow DE=13cm\)
cho tam giác ABC vuông ở A, có góc C=30 độ AH vuông góc với BC.( H thuộc BC) .Trên đoạn HC lấy điểm D sao cho HD=HB. từ C kẽ CE vuông với AD. chứng minh rằng:
A. tam giác ABD là tam giác đều
B. AH=CE
C. EH//AC
giúp mik với mik đg cần gấp
a) ∆DEI = ∆DFI có:
DI là cạnh chung
DE = DF ( ∆DEF cân)
IE = IF (DI là trung tuyến)
=> ∆DEI = ∆DFI (c.c.c)
b) Vì ∆DEI = ∆DFI =>
mà = 1800 ( kề bù)
nên = 900
c) I là trung điểm của EF nên IE = IF = 5cm
∆DEI vuông tại I => DI2 = DE2 – EI2 (định lí pytago)
=> DI2 = 132 – 52 = 144
=> DI = 12
1 đúng nhé
a) ∆DEI = ∆DFI có:
DI là cạnh chung
DE = DF ( ∆DEF cân)
IE = IF (DI là trung tuyến)
=> ∆DEI = ∆DFI (c.c.c)
b) Vì ∆DEI = ∆DFI =>
mà = 1800 ( kề bù)
nên = 900
c) I là trung điểm của EF nên IE = IF = 5cm
∆DEI vuông tại I => DI2 = DE2 – EI2 (định lí pytago)
=> DI2 = 132 – 52 = 144
=> DI = 12
a: Xét ΔDEI và ΔDFI có
DE=DF
DI chung
IE=IF
Do đó: ΔDEI=ΔDFI
b: Ta có: ΔDEI=ΔDFI
nên \(\widehat{DIE}=\widehat{DIF}\)
mà \(\widehat{DIE}+\widehat{DIF}=180^0\)
nên \(\widehat{DIE}=\widehat{DIF}=\dfrac{180^0}{2}=90^0\)
a) ∆DEI = ∆DFI có:
DI là cạnh chung
DE = DF ( ∆DEF cân)
IE = IF (DI là trung tuyến)
=> ∆DEI = ∆DFI (c.c.c)
b) Vì ∆DEI = ∆DFI =>
mà = 1800 ( kề bù)
nên = 900
a/ xét /\ DEF cân tại D
=> DE = DF (t/c /\ cân )
DI là trung tuyến
=> DI vuông với FE => DIE = 90* => DIF kề bù với DIE => DIF = 90* (1)
=> I là trung điểm EF
Xét /\ DIF và /\ DIE có :
DIF = DIE (cmt )
DF =DE (cmt)
IF = IE ( cmt )
=> /\ DIE = /\ DIF (c.g.c)
b/ (1) => DIE = DIF = 90*
=> 2 góc này là hai góc vuông
c/ chịu .
4:
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
b: BH=CH=6/2=3cm
AH=căn 5^2-3^2=4cm
c: Xét ΔABC có
AH là trung tuyến
G là trọng tâm
=>A,G,H thẳng hàng
d: Xét ΔABG và ΔACG có
AB=AC
góc BAG=góc CAG
AG chung
=>ΔABG=ΔACG
=>góc ABG=góc ACQ
Vì ΔDEI = ΔDFI (cmt)