K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

Cách 1: ΔABC cân tại A nên ∠B = ∠C và AB = AC

Xét hai tam giác vuông ΔAHB và ΔAHC đều vuông tại H có:

   AB = AC (GT)

   ∠B = ∠C

⇒ ΔAHB =ΔAHC (cạnh huyền – góc nhọn)

Cách 2:

Xét hai tam giác vuông ΔAHB và ΔAHC đều vuông tại H có:

   AB = AC

   AH chung

⇒ ΔAHB = ΔAHC (cạnh huyền – cạnh góc vuông)

3 tháng 3 2022

a.Xét tam giác vuông AHB và tam giác vuông AHC, có:

AB = AC ( ABC cân )

góc B = góc C ( ABC cân )

Vậy tam giác vuông AHB = tam giác vuông AHC ( cạnh huyền. góc nhọn)

=> HB = HC ( 2 cạnh tương ứng )

b.Xét tam giác vuông ADH và tam giác vuông AEH, có:

AH: cạnh chung

góc DAH = góc EAH ( AH là đường cao cũng là đường phân giác )

Vậy tam giác vuông ADH = tam giác vuông AEH

=> HD = HE ( 2 cạnh tương ứng )

=> tam giác HDE cân tại H

c.Xét tam giác vuông AEC và tam giác vuông ADB, có:

AB = AC ( ABC cân )

góc A: chung 

Vậy tam giác vuông AEC = tam giác vuông ADB ( cạnh huyền.góc nhọn)

=> AD = AE ( 2 cạnh tương ứng )

=> tam giác ADE cân tại A

=> AH vuông với DE, mà AH cũng vuông với BC

=> DE//BC ( DE ko phải DC nha bạn )

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó:ΔAHB=ΔAHC

Suy ra: HB=HC

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE

hay ΔHDE cân tại H

c: Ta có: ΔADH=ΔAEH

nên AD=AE

Xét ΔABC có AD/AB=AE/AC

nên DE//BC

A B C H

a/ Xét tam giác AHB và tam giác AHC 

Góc AHB=AHC=90 độ

AB=AC(tam giác ABC cân tại A)

Góc B=C (tam giác ABC cân tại A)

=> Tam giác ABH=ACH(ch-gn)

mk nha

Vẽ cái hình ra đi

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: Ta có: ΔABH=ΔACH

nên HB=HC và \(\widehat{BAH}=\widehat{CAH}\)

c: Xét ΔHKB vuông tại K và ΔHIC vuông tại I có

HB=HC

\(\widehat{B}=\widehat{C}\)

Do đó: ΔHKB=ΔHIC

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

Lời giải:

a) Xét tam giác $AHB$ và $AHC$ có:

$AH$ chung

$AB=AC$ do $ABC$ cân tại $A$

$\widehat{AHB}=\widehat{AHC}=90^0$

$\Rightarrow \triangle AHB=\triangle AHC$ (ch-cgv)

b) 

Vì $ABC$ cân tại $A$ nên $\widehat{ABC}=\widehat{ACB}$

$\Rightarrow 180^0-\widehat{ABC}=180^0-\widehat{ACB}$ 

hay $\widehat{ABD}=\widehat{ACE}$ 

Xét tam giác $ABD$ và $ACE$ có:

$BD=CE$

$AB=AC$

$\widehat{ABD}=\widehat{ACE}$ (cmt)

$\Rightarrow \triangle ABD=\triangle ACE$ (c.g.c)

$\Rightarrow AD=AE$ nên $ADE$ là tam giác cân.

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

Hình vẽ:

undefined

a: Xét ΔAHB và ΔAHC có 

AH chung

AB=AC

HB=HC

Do đó: ΔAHB=ΔAHC

b: Ta có: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là đường cao

16 tháng 2 2016

theo dề bài ta có 

AH Là dường cao của tam giác ABC

=>tam giác AHB và tam giác AHC vuông tại H 

Xét tam giác ABC cân tại A ta có 

AH Là dường cao kẻ từ dỉnh A 

=>AH cũng là dường trung tuyến ứng cạnh BC 

=> BH=HC 

xét tam giác AHB (góc H =90 dộ )và tam giác AHC (góc H =90 dộ )

AB=AC(do tam giác ABC cân tại A

BH=HC(chứng minh trên)

=>tam giác AHB=tam giác AHC (cạnh huyền- cạnh góc vuông)

C2

theo dề bài ta có 

AH vuông góc vs BC

=>Ah là dường cao cua tam giác ABc

=>tam giác AHB và tam giác AHc vuông tại h 

xét tam giác AHB (H =90 độ)và tam giác AHC (h=90 dộ )

AH là cạnh chung 

BH=HC(chứng minh như trên )

=>Tam giác AHB=tam giác AHC (hai cạnh góc vuông )

16 tháng 2 2016
C1: Xét tg AHB và tg AHC có: AH chung AB=AC( tg ABC cân tại A) => tg AHB=tg AHC (cạnh huyền-cạnh góc vuông) C2: Xét tg AHB và tg AHC có: AB=AC(tgABC cân tại A) góc B= góc C (tg ABC cân tại A) => tg AHB=tg AHC (cạnh huyền-góc nhọn
3 tháng 2 2017

theo đề bài ta có

AH Là dường cao của tam giác ABC

=>tam giác AHB và tam giác AHC vuông tại H

Xét tam giác ABC cân tại A ta có

AH Là dường cao kẻ từ dỉnh A

=>AH cũng là dường trung tuyến ứng cạnh BC

=> BH=HC

xét tam giác AHB (góc H =90 dộ )và tam giác AHC (góc H =90 dộ )

AB=AC(do tam giác ABC cân tại A

BH=HC(chứng minh trên)

=>tam giác AHB=tam giác AHC (cạnh huyền- cạnh góc vuông)

C2 theo dề bài ta có

AH vuông góc vs BC

=>Ah là dường cao cua tam giác ABc

=>tam giác AHB và tam giác AHc vuông tại h

xét tam giác AHB (H =90 độ)và tam giác AHC (h=90 dộ )

AH là cạnh chung

BH=HC(chứng minh như trên )

=>Tam giác AHB=tam giác AHC (hai cạnh góc vuông )

3 tháng 2 2017

ok bạn cảm ơn nha

9 tháng 5 2022

a. Xét Δ ABE và Δ KBE có:

^B1=^B2(BD là tia p/g)

^BEA=^KEB=90o

AE chung

=> ΔABE=ΔKBE(g.c.g)

=>AB=KB

=>ΔABK cân tại B

(xin lỗi mình ko biết phần b,c,d) ;-;

cho bạn cái hình nè :loading...