K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(DF=\dfrac{EF^2}{IF}=15\left(cm\right)\)

18 tháng 5 2016

Diem N o dau the ban

a) xét tam giác DEI và tam giác DFI có:

                       góc DIE = góc DIF = 900 (gt)

                        DI chung

                       EI = IF (gt)

=> tam giác DEI = tam giác DFI (ch-gn)

b) tam giác DEF cân tại D có DI là trung truyến

=> DI là đường cao

=> DI vuông góc EF

c) đề có sự cố ko giải được

Ta có: ΔDEF vuông tại E

nên \(\widehat{D}+\widehat{F}=90^0\)

hay \(\widehat{F}=40^0\)

Xét ΔDEF vuông tại E có 

\(EF=ED\cdot\tan50^0\)

\(\Leftrightarrow EF\simeq4,41\left(cm\right)\)

Áp dụng định lí Pytago vào ΔDEF vuông tại E, ta được:

\(DF^2=DE^2+EF^2\)

\(\Leftrightarrow DF^2=3.7^2+4.41^2=33.1381\)

hay \(DF\simeq5,76\left(cm\right)\)

16 tháng 12 2021

Bài 2: 

a: Xét (E) có 

DF⊥DE tại D

nên DF là tiếp tuyến của (E;ED)

a) Xét ΔDEF vuông tại D và ΔHED vuông tại H có

\(\widehat{E}\) chung

Do đó: ΔDEF\(\sim\)ΔHED(g-g)

b) Ta có: ΔDEF\(\sim\)ΔHED(cmt)

nên \(\dfrac{DE}{HE}=\dfrac{EF}{ED}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(DE^2=EF\cdot EH\)(đpcm)

tứ giác BFEC có hai góc kề nhau cùng nhìn đoạn BC dưới một góc vuông : BFCˆ=BECˆ(=90)BFC^=BEC^(=90) ==> Tức giác BFEC là tứ giác nội tiếp

==> 4 điểm B,E,F,C cùng thuộc một đường tròn.

21 tháng 12 2021

\(\widehat{B}=48^0\)

\(BC\simeq31,38\left(cm\right)\)

31 tháng 7 2023

\(AB^2=AH^2+BH^2\Rightarrow AH^2=AB^2-BH^2\left(1\right)\left(Pitago\right)\)

\(AC^2=AH^2+CH^2\Rightarrow AH^2=AC^2-CH^2\left(2\right)\left(Pitago\right)\)

\(\left(1\right),\left(2\right)\Rightarrow AC^2-CH^2=AB^2-BH^2\)

\(\Rightarrow AB^2+CH^2=AC^2+BH^2\)

\(\Rightarrow dpcm\)

31 tháng 7 2023

 Ta có \(AB^2-AC^2=\left(BH^2+AH^2\right)-\left(CH^2+AH^2\right)\) \(=BH^2-CH^2\) \(\Rightarrow AB^2+CH^2=AC^2+BH^2\), đpcm.

 (Bài này kết quả vẫn đúng nếu không có điều kiện tam giác ABC vuông tại A.)