Cho hình thoi ABCD, góc A = 60 o . Qua C kẻ đường thẳng d bất kì cắt các tia đối của các tia BA, DA theo thứ tự tại E và F. Gọi I là giao điểm của BF và ED. Chứng minh:
a) E B B A = A D D F ;
b) Δ E B D ∽ Δ B D F ;
c) B I D ^ = 120 0 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Vì BC//AD nên EB/BA=CE/CF
Vì DC//AB nên AD/DF=EC/FC
=>EB/BA=AD/DF
b: Vì ABCD là hình thoi và góc A=60 độ
nên AB=BC=CD=AD=AC
Xét ΔEBD và ΔBDF có
góc EBD=góc BDF
EB/BD=BD/DF
=>ΔEBD đồng dạng với ΔBDF
c: ΔEBD đồng dạng với ΔBDF
=>góc BED=góc DBF
=>ΔBDI đồng dạng với ΔEDB
=>góc BID=góc EBD=120 độ
1, Có BC//AD (tính chất hình thoi)
Nên \(\widehat{MBC}=\widehat{A}=\widehat{CDN}\)(cách cặp góc đồng vị)
\(\widehat{BCM}=\widehat{DNC}\)(góc đồng vị)
=> \(\Delta\)MBC đồng dạng với \(\Delta\)CDN (g-g)
=> \(\frac{BM}{DC}=\frac{BC}{DN}\)
=> BM.ND=BC.DC=a2(không đổi)
b) \(\Delta\)BCD đều (Do BC=CD và \(\widehat{C}=60^o\)) nên BD=DC=BC
Ta có: \(\frac{BM}{DC}=\frac{BC}{DN}\left(a\right)\Rightarrow\frac{BM}{BD}=\frac{DB}{DN}\)
Lại có: \(\widehat{MBD}=\widehat{BDN}=120^o\)(kề bù với các góc của tam giác đều ABD)
=> \(\Delta BMD=\Delta DBN\left(c.g.c\right)\)
\(\Rightarrow\widehat{AMD}=\widehat{DBN}\)(2 góc tương ứng)
Xét tam giác BKD và tam giác MBD có: \(\widehat{AMD}=\widehat{DBN}\left(cmt\right)\); \(\widehat{BDM}\)chung
=> Tam giác BKD đồng dạng với tam giác MBD (g-g)
\(\Rightarrow\widehat{BKD}=\widehat{MBD}=120^o\)
a: Xét ΔAMO và ΔAOD có
góc AMO=góc AOD
góc MAO=góc OAD
=>ΔAMO đồng dạng với ΔAOD
=>MN//EF
b: (HOM) vuông góc (ADO)
=>HO vuôg góc MQ
mà MQ//ND
nên H là trực tâm của ΔAMN