Cho bất phương trình x + 6 + m > x 6 − 3 . Tìm m để bất phương trình có nghiệm x = 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt
Suy ra
Ta có
Ta có bảng biến thiên
Từ bảng biến thiên ta suy ra
Khi đó bất phương trình trở thành:
Xét hàm số với
Ta có
Suy ra hàm số f(t) nghịch biến trên
Chọn C.
\(\left\{{}\begin{matrix}m\left(x+3\right)\le x+5\\m\left(x+2\right)\ge x+3\end{matrix}\right.\) có nghiệm chung \(\left(1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{x+5}{x+3}\\m\ge\dfrac{x+3}{x+2}\end{matrix}\right.\)
Để 2 pt có 1 nghệm chung thì \(\dfrac{x+5}{x+3}=\dfrac{x+3}{x+2}\)
\(\Leftrightarrow\left(x+5\right)\left(x+2\right)-\left(x+3\right)^2=0\)
\(\Leftrightarrow x^2+7x+10-x^2-6x-9=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Thay \(x=-1\) vào \(\left(1\right):\)
\(\left\{{}\begin{matrix}m\left(-1+3\right)\le-1+5\\m\left(-1+2\right)\ge-1+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m\le4\\m\ge2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le2\\m\ge2\end{matrix}\right.\)
\(\Rightarrow m=2\)
Vậy m = 2 thì bpt trên có nghiệm chung
\(\Leftrightarrow\left[{}\begin{matrix}3\left(m+6\right)x^2-3\left(m+3\right)x+2m-3>3\\3\left(m+6\right)x^2-3\left(m+3\right)x+2m-3< -3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3\left(m+6\right)x^2-3\left(m+3\right)x+2m-6>0\\3\left(m+6\right)x^2-3\left(m+3\right)x+2m< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m+6>0\\\Delta=9\left(m+3\right)^2-12\left(m+6\right)\left(2m-6\right)< 0\end{matrix}\right.\\\left\{{}\begin{matrix}m+6< 0\\9\left(m+3\right)^2-24m\left(m+6\right)< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m>-6\\-15m^2-18m+513< 0\end{matrix}\right.\\\left\{{}\begin{matrix}m< -6\\-15m^2-90m+81< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow...\) (kết quả xấu quá)
3:
x^2-2x+1-m^2<=0
=>(x-1)^2-m^2<=0
=>(x-1)^2<=m^2
=>-m<=x-1<=m
=>-m+1<=x<=m+1
mà x thuộc [-1;2]
nên -m+1>=-1 và m+1<=2
=>-m>=-2 và m<=1
=>m<=2 và m<=1
=>m<=1