K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

Giải bài 2 trang 69 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 2 trang 69 SGK Toán 9 Tập 2 | Giải toán lớp 9

7 tháng 4 2017

Ta có :

\(\widehat{xOs}\)= 400(theo giải thiết)

\(\widehat{tOy}\)=400( đối đỉnh với \(\widehat{xOs}\))

\(\widehat{xOt}\) + \(\widehat{tOy}\)= 1800

\(\Rightarrow\widehat{xOt}\) = \(\widehat{tOy}\) \(=180^0-40^0=140^0\)

\(\widehat{yOs}=140^0\)(đối đỉnh với \(\widehat{xOt}\))

\(\widehat{xOy}=\widehat{sOt}=180^0\)

22 tháng 4 2019

Giải bài 2 trang 69 SGK Toán 9 Tập 2 | Giải toán lớp 9Giải bài 2 trang 69 SGK Toán 9 Tập 2 | Giải toán lớp 9

Bài toán 5: Vẽ đường tròn tâm O và các đường kính AB và CD. Kể tên các cặp góc đối đỉnh trong hình vẽ.Bài toán 6: Hai đường thẳng AB và CD cắt nhau tại O. Biết góc AOC+ góc BOD=103 độ.Tính số đo của bốn góc tạo thành.Bài toán 7: Hai đường thẳng MN và PQ cắt nhau tại O, tạo thành góc MOP =60 độa) Tính số đo của các góc còn lại;b) Vẽ tia Ot là tia phân giác của góc MOP rồi vẽ tia Ot’ là...
Đọc tiếp

Bài toán 5: Vẽ đường tròn tâm O và các đường kính AB và CD. Kể tên các cặp góc đối đỉnh trong hình vẽ.

Bài toán 6: Hai đường thẳng AB và CD cắt nhau tại O. Biết góc AOC+ góc BOD=103 độ.Tính số đo của bốn góc tạo thành.

Bài toán 7: Hai đường thẳng MN và PQ cắt nhau tại O, tạo thành góc MOP =60 độ

a) Tính số đo của các góc còn lại;

b) Vẽ tia Ot là tia phân giác của góc MOP rồi vẽ tia Ot’ là tia đối của tia Ot. Vì sao tia Ot’ là tia phân giác của  góc NOQ

c) Kể tên các cặp góc đối đỉnh là góc nhọn.

Bài toán 8: Cho góc AOB Vẽ góc kề bù với góc AOB Vẽ góc AOD kề bù với góc AOB. Trên hình vẽ có hai góc nào đối đỉnh?

Bài toán 9: Hai đường thẳng AB và CD cắt nhau tại  O tạo thành góc AOD= 110 độ. Tính ba góc còn lại

giúp mình với mọi người ơi

 

0
2 tháng 5 2017

a, xoz=75 độ

24 tháng 6 2019

1 tháng 9 2019

Giải bài 5 trang 69 SGK Toán 9 Tập 2 | Giải toán lớp 9

Góc ở tâm tạo bởi OA và OB là Giải bài 5 trang 69 SGK Toán 9 Tập 2 | Giải toán lớp 9

Tứ giác OAMB có:

a: Xét tứ giác BEFC có \(\widehat{BEC}=\widehat{BFC}=90^0\)

nên BEFC là tứ giác nội tiếp đường tròn đường kính BC

=>B,E,F,C cùng thuộc một đường tròn

tâm I là trung điểm của BC

b: Xét ΔABC có

BF,CE là các đường cao

BF cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC

=>AM\(\perp\)BC

Xét (O) có

ΔAMD nội tiếp

AD là đường kính

Do đó: ΔAMD vuông tại M

=>AM\(\perp\)MD

Ta có: AM\(\perp\)BC

AM\(\perp\)MD

Do đó: BC//MD

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{ADC}\)

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

Ta có: \(\widehat{BAH}+\widehat{ABC}=90^0\)(AH\(\perp\)BC)

\(\widehat{ADC}+\widehat{CAD}=90^0\)(ΔACD vuông tại C)

mà \(\widehat{ABC}=\widehat{ADC}\)

nên \(\widehat{BAH}=\widehat{CAD}\)

=>\(\widehat{BAH}+\widehat{MAD}=\widehat{CAD}+\widehat{MAD}\)

=>\(\widehat{BAD}=\widehat{CAM}\)(1)

Xét (O) có

\(\widehat{BAD}\) là góc nội tiếp chắn cung BD

\(\widehat{BCD}\) là góc nội tiếp chắn cung BD

Do đó: \(\widehat{BAD}=\widehat{BCD}\left(2\right)\)

Xét (O) có

\(\widehat{CBM}\) là góc nội tiếp chắn cung CM

\(\widehat{CAM}\) là góc nội tiếp chắn cung CM

Do đó: \(\widehat{CBM}=\widehat{CAM}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{CBM}=\widehat{BCD}\)

Xét tứ giác BCDM có BC//DM

nên BCDM là hình thang

Hình thang BCDM có \(\widehat{CBM}=\widehat{BCD}\)

nên BCDM là hình thang cân

c: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BA\(\perp\)BD

mà CH\(\perp\)BA

nên CH//BD

Ta có: CD\(\perp\)CA

BH\(\perp\)AC

Do đó: BH//CD

Xét tứ giác BHCD có

BH//CD
BD//CH

Do đó: BHCD là hình bình hành

=>BC cắt HD tại trung điểm của mỗi đường

mà I là trung điểm của BC

nên I là trung điểm của HD

=>H,I,D thẳng hàng

d: Kẻ tiếp tuyến Ax của (O)

Xét (O) có

\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{xAC}=\widehat{ABC}\)

mà \(\widehat{ABC}=\widehat{AFE}\left(=180^0-\widehat{EFC}\right)\)

nên \(\widehat{xAC}=\widehat{AFE}\)

mà hai góc này là hai góc ở vị trí so le trong

nên EF//Ax

Ta có: Ax//EF

Ax\(\perp\)AD

Do đó: AD\(\perp\)EF tại K