K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

Chứng minh họ đường thẳng y = mx + (2m + 1) (1) luôn đi qua một điểm cố định nào đó.

Giả sử điểm A( x o ;  y o ) là điểm mà họ đường thẳng (1) đi qua với mọi m. Khi đó tọa độ điểm A nghiệm đúng phương trình hàm số (1).

Với mọi m, ta có:  y o  = m x o  + (2m + 1) ⇔ ( x o  + 2)m + (1 – y) = 0

Vì phương trình nghiệm đúng với mọi giá trị của m nên tất cả các hệ số phải bằng 0.

Suy ra:  x o  + 2 = 0 ⇔  x o  = -2

1 –  y o  = 0 ⇔  y o = 1

Vậy A(-2; 1) là điểm cố định mà họ đường thẳng y = mx + (2m + 1) luôn đi qua với mọi giá trị m.

30 tháng 5 2017

Hàm số bậc nhất

Gọi điểm cố định là \(M\left(x_0;y_0\right)\)

\(\Rightarrow2mx_0+2m+1=y_0\)  \(\left(\forall m\right)\)

\(\Leftrightarrow2m\left(x_0+1\right)=y_0-1\)  \(\left(\forall m\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\y_0-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=1\end{matrix}\right.\)

  Vậy đường thẳng luôn đi qua \(M\left(-1;1\right)\)

4 tháng 2 2021

lại nx à

30 tháng 9 2018

c) Giả sử đường thẳng  d 1  luôn đi qua một điểm cố định ( x 1 ; y 1  ) với mọi giá trị của m.

⇒  y 1 = m x 1  + 2m - 1 với mọi m

⇔ m( x 1  + 2) - 1 -  y 1 = 0 với mọi m

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy điểm cố định mà d 1  luôn đi qua với mọi giá trị của m là (-2; -1).

29 tháng 7 2016

Hỏi đáp Toán

2 tháng 11 2019

Phúc xilip

22 tháng 8 2021

gọi A{x0,y0 } là điểm cố định

thay A vào d ta có:

y0=(2m-1)x0-3m+5\(\Rightarrow\)y0-(2m-1)x0+3m+5=0\(\Leftrightarrow\)y0-2mx0+x0+3m+5=0

\(\Leftrightarrow\)m(3-2x0)+(y0+x0+5)=0\(\Leftrightarrow\left\{{}\begin{matrix}3-2x_0=0\\y_0+x_0+5=0\end{matrix}\right.\)(đồng nhất thức)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x_0=\dfrac{3}{2}\\y_0=-\dfrac{13}{2}\end{matrix}\right.\)

21 tháng 11 2018

a) y = x 3  − (m + 4) x 2  − 4x + m

⇔ ( x 2  − 1)m + y − x 3  + 4 x 2  + 4x = 0

Đồ thị của hàm số (1) luôn luôn đi qua điểm A(x; y) với mọi m khi (x; y) là nghiệm của hệ phương trình:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải hệ, ta được hai nghiệm:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy đồ thị của hàm số luôn luôn đi qua hai điểm (1; -7) và (-1; -1).

b) y′ = 3 x 2  − 2(m + 4)x – 4

Δ′ = ( m + 4 ) 2  + 12

Vì Δ’ > 0 với mọi m nên y’ = 0 luôn luôn có hai nghiệm phân biệt (và đổi dấu khi qua hai nghiệm đó). Từ đó suy ra đồ thị của (1) luôn luôn có cực trị.

c) Học sinh tự giải.

d) Với m = 0 ta có: y = x 3  – 4 x 2  – 4x.

Đường thẳng y = kx sẽ cắt (C) tại ba điểm phân biệt nếu phương trình sau có ba nghiệm phân biệt:  x 3  – 4 x 2  – 4x = kx.

Hay phương trình  x 2  – 4x – (4 + k) = 0 có hai nghiệm phân biệt khác 0, tức là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12