Cho hai điểm A và B.
Có bao nhiêu đường tròn như vậy ? Tâm của chúng nằm trên đường nào ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
b) Có vô số đường tròn đi qua hai điểm. Tâm của chúng nằm trên đường trung trực của đoạn thẳng đó
a) HS tự vẽ hình.
b) Hai đường tròn trên có đi qua O và I. Chúng có cắt nhau.
a) HS tự vẽ hình.
b) Hai đường tròn trên có đi qua O và I. Chúng có cắt nhau.
a) Ta có: PA = PB (A; B nằm trên cung tròn tâm P) nên P nằm trên đường trung trực của AB.
CA = CB (C nằm trên 2 cung tròn tâm A, B bán kính bằng nhau) nên C nằm trên đường trung trực của AB.
Vậy CP là đường trung trực của AB, suy ra PC ⊥ d.
QUẢNG CÁOb) Một cách vẽ khác
- Lấy hai điểm A, B bất kì trên d.
- Vẽ cung tròn tâm A bán kính AP, cung tròn tâm B bán kính BP. Hai cung tròn cắt nhau tại C (C khác P).
- Vẽ đường thẳng PC. Khi đó PC là đường đi qua P và vuông góc với d.
Chứng minh :
- Theo định lí 2 :
PA = CA ( P,C cùng thuộc cung tròn tâm A bán kính PA)
⇒ A thuộc đường trung trực của PC.
PB = CB (P, C cùng thuộc cung tròn tâm B bán kính PB)
⇒ B thuộc đường trung trực của PC.
⇒ AB là đường trung trực của PC
⇒ PC ⏊ AB hay PC ⏊ d.
a) Đường tròn tâm B có là góc nội tiếp chắn cung là góc ở tâm chắn cung
Đường tròn tâm C có là góc nội tiếp chắn cung là góc ở tâm chắn cung
Kiến thức áp dụng
Trong một đường tròn, góc nội tiếp có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.
OA = 2 < 2 nên điểm O và A nằm trong (A; 2)
AB = 2 nên điểm B nằm trên (A; 2)
AD = 2 nên điểm D nằm trên (A; 2)
AC = 2 2 > 2 nên điểm C nằm ngoài (A; 2)
Có vô số đường tròn đi qua hai điểm. Tâm của chúng nằm trên đường trung trực của đoạn thẳng đó