K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2019

Một cung lượng giác trên đường tròn định hướng có độ dài bằng bán kính thì có số đo 1 rad hoặc -1 rad.

Do đó, một cung lượng giác trên đường tròn định hướng có độ dài bằng hai lần bán kính thì số đo theo rađian của cung đó là 2 rad hoặc – 2 rad.

Suy ra B đúng.

Câu 1: D

Câu 2: B

23 tháng 2 2016

Gọi độ dài 3 cạnh DABC lần lượt là a,b,c. Đường cao hạ từ các đỉnh A,B,C là x,y,z. Bán kính đường tròn nội tiếp tam giác ABC = 1. Khi đó ta có
SABC=1/2ax=1/2by=1/2cz=1/2(a+b+c)r
       => ax = by = cz = a+b+c   [*]
 ta có:
ax = by = cz => a: (1/ x)= b:(1/ y)=c:(1/z)
=> (a+b+c): (1/x+1/y+1/z) = a+b+c
=> (1/x+1/y+1/z) = 1
Giả sử:  0 ≤ x ≤ y ≤ z  =>1/x ≥1/y ≥ 1/z => 3/x ≤ 1  => x ≤ 3
Thử từng trường hợp:
*x=1. => Loại 
*x=2 =>1/y+1 / z= ½.  Mà x,y ϵ Z
=>y,z ϵ {(4,4);(3;6)}
y = z = 4   => 2a = 4b = 4c   Áp dụng BDT  tam giác vào  tam giác ABH thấy ko thỏa mãn=>loại
y=3;z=4⇒2a=3b=4c (loại)
*x=3
x = y = z = 3  => a=b=c=> tam giácABC:đều  (đpcm). 

2 tháng 12 2015

1) Gọi cạnh tam giác đều là a => đường cao h =\(\frac{a\sqrt{3}}{2}\)=

mà h = 3/2R => \(\frac{a\sqrt{3}}{2}\)=\(\frac{3}{2}.\frac{4}{3}\) =2=> a =\(\frac{4}{\sqrt{3}}\)

S =ah/2 =\(\frac{4}{\sqrt{3}}\).2/2 =\(\frac{4}{\sqrt{3}}\)

2) ABC vuông tại A ( 62+82 =102)

M là điểm chính giữa => AM =CM => OM là trung trực AC => Tam giác OIC vuông tại  I 

 => OI = \(\sqrt{OC^2-IC^2}=\sqrt{5^2-4^2}=3\)

2 tháng 12 2015

câu 2 ; theo đề bài ta có tam giác ABC vuông tại A

VÌ OM là đường kính đi qua dây AC nên OM vuông góc với AC hay OI vuông góc với AC và AI=IC[tính chất đường kính]

Do đó OI song song với AB[cùng vuông góc với AC]

theo định lí ta-lét ta có \(\frac{OI}{AB}=\frac{IC}{AC}\)

mà IC=AC =8/2=4 cm

thay vào giải ra OI=6*4/8=3 cm

còn câu 1 tớ cũng đang định hỏi đây

21 tháng 2 2018

Đáp án C

3 tháng 4 2020

chung minh tu giac abek noi tiep duoc mot duong tron