Chung minh voi moi n 2 so sau la 2 so nguyen to cung nhau
a,n+15;n+72
b,24n+7 và 18n+6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy
3 ; 8 là 2 số nguyên tố cùng nhau
Khi cộng vào 2n và 4n thì cũng sẽ có 2n và 4n không cùng chia hết cho bất cứ số nào nên UCLN là 1 .
Các số có ước chung lớn nhất là 1 thì là số nguyên tố .
Ta thấy
3 ; 8 là 2 số nguyên tố cùng nhau
Khi cộng vào 2n và 4n thì cũng sẽ có 2n và 4n không cùng chia hết cho bất cứ số nào nên UCLN là 1 .
Các số có ước chung lớn nhất là 1 thì là số nguyên tố .
a) Gọi d là ƯC( 7n + 10 ; 5n + 7 )
=> \(\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)
=> ( 35n + 50 ) - ( 35n + 49 ) chia hết cho d
=> 35n + 50 - 35n - 49 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN( 7n + 10 ; 5n + 7 ) = 1
=> 7n + 10 ; 5n + 7 là hai số nguyên tố cùng nhau ( đpcm )
b) Gọi d là ƯC( 2n + 3 ; 4n + 8 )
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
=> ( 4n + 8 ) - ( 4n + 6 ) chia hết cho d
=> 4n + 8 - 4n - 6 chia hết cho d
=> 2 chia hết cho d
=> d ∈ { 1 ; 2 }
Với d = 2 => \(2n+3⋮̸̸d\)
=> d = 1
=> ƯCLN( 2n + 3 ; 4n + 8 ) = 1
=> 2n + 3 ; 4n + 8 là hai số nguyên tố cùng nhau ( đpcm )
Ta có: 7n+10 và 5n+7 nguyên tố cùng nhau
Gọi ước chung của 2 số này là d
=> 7n+10 chia hết cho d
=> 5n+7 chia hết cho d
=> 5(7n+10) chia hết cho d
=> 7(5n+7) chia hết cho d
=> 35n+ 50 chia hết cho d
=> 35n+ 49 chia hết cho d
=> 35n+50 - 35n+49 chia hết cho d
=> 1 chia hết cho d
=> d thuộc U( 1)
=> d=1
=> Nguyên tố cùng nhau
Tick mình nha các bạn
Gọi d là ƯCLN của 12n + 1 và 30n + 2
Khi đó : 12n + 1 chia hết cho d , 30n + 2 chia hết cho d
<=> 5.(12n + 1) chia hết cho d , 2(30n + 2) chia hết cho d
=> 60n + 5 chia hết cho d , 60n + 4 chia hết cho d
=> (60n + 5) - (60n + 4) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy phân số \(A=\frac{12n+1}{30n+2}\)
Gọi ƯCLN(12n+1;30n+2)=d => 12n+1 chia hết cho d; 30n+2 chia hết cho d
=>5(12n+1) chia hết cho d và 2(30n+2) chia hết cho d
=>60n+5 chia hết cho d và 60n+4 chia hết cho d
=>(60n+5)-(60n-+4) chia hết cho d
=>1 chia hết cho d
=>d=1
Phân số \(\frac{12n+1}{30n+2}\) có ƯCLN(12n+1;30n+2)=> \(\frac{12n+1}{30n+2}\) tối giản với mọi số nguyên n
Gọi ƯCLN (2n+3,3n+4) là d
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}}}\)
\(\Rightarrow6n+9-\left(6n+8\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\)2n+3 và 3n+4 nguyên tố cùng nhau