K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

Áp dụng công thức u n ' = n u n − 1 . u ' .

Ta có

y ' = 2 x 5 − 2 x 2 x 5 − 2 x 2 ' = 2 x 5 − 2 x 2 5 x 4 − 4 x

=    2 ( ​ 5 x 9 − 4 x 6 − 10 x 6 +    ​ 8 x 3 ) =    2 ( 5 x 9 − 14 x 6 +    ​ 8 x 3 )    = 10 x 9 − 28 x 6 + 16 x 3

Chọn đáp án C

9 tháng 11 2019

Ta có

f ( x ) = ( x + 2 ) ( x − 3 ) = x 2 − x − 6 ⇒ f ' x = 2 x − 1

Chọn đáp án C

NV
22 tháng 4 2022

\(y=\dfrac{1}{3x^2-x-2}=\dfrac{1}{\left(x-1\right)\left(3x+2\right)}=\dfrac{1}{5}.\dfrac{1}{x-1}-\dfrac{3}{5}.\dfrac{1}{3x+2}\)

\(y'=\dfrac{1}{5}.\dfrac{\left(-1\right)^1.1!}{\left(x-1\right)^2}-\dfrac{3}{5}.\dfrac{\left(-1\right)^1.3^1.1!}{\left(3x+2\right)^2}\)

\(y''=\dfrac{1}{5}.\dfrac{\left(-1\right)^2.2!}{\left(x-1\right)^3}-\dfrac{3}{5}.\dfrac{\left(-1\right)^2.3^2.2!}{\left(3x+2\right)^3}\)

\(\Rightarrow y^{\left(n\right)}=\dfrac{1}{5}.\dfrac{\left(-1\right)^n.n!}{\left(x-1\right)^{n+1}}-\dfrac{3}{5}.\dfrac{\left(-1\right)^n.3^n.n!}{\left(3x+2\right)^{n+1}}\)

\(\Rightarrow y^{\left(2019\right)}=\dfrac{1}{5}.\dfrac{\left(-1\right)^{2019}.2019!}{\left(x-1\right)^{2020}}-\dfrac{3}{5}.\dfrac{\left(-1\right)^{2019}.3^{2019}.2019!}{\left(3x+2\right)^{2019}}\)

\(=\dfrac{2019!}{5}\left(\dfrac{3^{2020}}{\left(3x+2\right)^{2020}}-\dfrac{1}{\left(x-1\right)^{2020}}\right)\)

23 tháng 3 2017

Ta có :

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

Chọn C.

NV
22 tháng 4 2022

\(y=\dfrac{1}{2x^2+x-1}=\dfrac{1}{\left(x+1\right)\left(2x-1\right)}=\dfrac{2}{3}.\dfrac{1}{2x-1}-\dfrac{1}{3}.\dfrac{1}{x+1}\)

\(y'=\dfrac{2}{3}.\dfrac{-2}{\left(2x-1\right)^2}-\dfrac{1}{3}.\dfrac{-1}{\left(x+1\right)^2}=\dfrac{2}{3}.\dfrac{\left(-1\right)^1.2^1.1!}{\left(2x-1\right)^2}-\dfrac{1}{3}.\dfrac{\left(-1\right)^1.1!}{\left(x+1\right)^2}\)

\(y''=\dfrac{2}{3}.\dfrac{\left(-1\right)^2.2^2.2!}{\left(2x-1\right)^3}-\dfrac{1}{3}.\dfrac{\left(-1\right)^2.2!}{\left(x+1\right)^3}\)

\(\Rightarrow y^{\left(n\right)}=\dfrac{2}{3}.\dfrac{\left(-1\right)^n.2^n.n!}{\left(2x-1\right)^{n+1}}-\dfrac{1}{3}.\dfrac{\left(-1\right)^n.n!}{\left(x+1\right)^{n+1}}\)

\(\Rightarrow y^{\left(2019\right)}=\dfrac{2}{3}.\dfrac{\left(-1\right)^{2019}.2^{2019}.2019!}{\left(2x-1\right)^{2020}}-\dfrac{1}{3}.\dfrac{\left(-1\right)^{2019}.2019!}{\left(x+1\right)^{2020}}\)

\(=\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}-\dfrac{2^{2020}}{\left(2x-1\right)^{2020}}\right)\)

31 tháng 12 2019

Áp dụng công thức u v ' = u ' . v − v ' . u v 2 .

Ta có: 

y ' = x 2 + x + 3 ' x 2 + x − 1 − x 2 + x − 1 ' x 2 + x + 3 x 2 + x − 1 2

=    ( 2 x + 1 ) ( ​ x 2 + x − 1 ) − ( 2 x + 1 ) . ( x 2 + x + 3 ) ( x 2 + x − 1 ) 2 =    ( 2 x + 1 ) . ( x 2 + ​ x − 1 − x 2 − x − 3 ) ( x 2 + x − 1 ) 2 = − 4 2 x + 1 x 2 + x − 1 2

Chọn đáp án B

15 tháng 2 2018

Ta có:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 4)

Chọn B

20 tháng 9 2018

Chọn D

8 tháng 2 2018

- Ta có:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

Chọn B.

28 tháng 1 2019

- Ta có:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 3)

Chọn D.

28 tháng 1 2017

Chọn C

y' = (2x +1)(3x - 2)2 + x.2.(3x - 2)2 + x(2x +1).2.(3x - 2).3

(3x - 2)[(2x +1)(3x - 2) + 2x.(3x - 2) + 6x(2x + 1)]

= (3x - 2)(24x2 + x - 2)