K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2019

19 tháng 1 2019

Đáp án C.

+ Gọi  G 0  là trọng tâm tam giác BCD=> G B ⇀   +   G C ⇀   +   G D ⇀   =   3 G G 0 ⇀

=> G A ⇀   +   G B ⇀   +   G C ⇀   +   G D ⇀   =   0 ⇀

=> A, G,  G 0 thẳng hàng  ⇒ G 0   =   G A

+ Có A, G,  G A thẳng hàng mà 

3 tháng 12 2021

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có:

\(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0  \Leftrightarrow \left( {\overrightarrow {GI}  + \overrightarrow {IA} } \right) + \left( {\overrightarrow {GI}  + \overrightarrow {IB} } \right) + \left( {\overrightarrow {GJ}  + \overrightarrow {JC} } \right) + \left( {\overrightarrow {GJ}  + \overrightarrow {JD} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow 2\overrightarrow {GI}  + \left( {\overrightarrow {IA}  + \overrightarrow {IB} } \right) + 2\overrightarrow {GJ}  + \left( {\overrightarrow {JC}  + \overrightarrow {JD} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow 2\overrightarrow {GI}  + 2\overrightarrow {GJ}  = \overrightarrow 0  \Leftrightarrow 2\left( {\overrightarrow {GI}  + \overrightarrow {GJ} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {GI}  + \overrightarrow {GJ}  = \overrightarrow 0  \Rightarrow \)G là trung điểm của đoạn thẳng IJ

Vậy I, G, J thẳng hàng

4 tháng 8 2018

Chọn D

Tứ diện đều ABCD  ⇒ A G 1 ⊥ B C D

Ta có ngay 

Cạnh  C G 1 = B C 3 = 3 ⇒ G 1 A = A C 2 - G 1 C 2 = 6 ⇒ d G 1 ; G 2 G 3 G 4 = 6 3

Lại có  G 2 G 3 M N = A G 2 A M = 2 3 ⇒ G 2 G 3 = 2 3 M N = 1 3 B D = 1

Tương tự GG=1, GG=1 ⇒ ∆ G 2 G 3 G 3  là tam giác đều có cạnh bằng 1

 

16 tháng 2 2017

Gọi E và F lần lượt là trung điểm của AC và BD; E' và F' lần lượt là hình chiếu của E, F trên đường thẳng m.

Khi đó, GG' là đường trung bình của hình thang EE'F'F

⇒ G G ' = 1 2 EE' +FF').  

Mà EE' và FF' lần lượt là đường trung bình của hình thang AA'C'C và BB'D'D.

⇒ EE ' = 1 2 (AA' +CC') và FF ' = 1 2 (BB' +DD')  

Thay vào (1) ta được ĐPCM

8 tháng 12 2021

Trong (BCD): DG \cap BC = F

Vậy DG \cap (ABC) = F.

b. Cách 1: MG \subset (BMG) \equiv (ABH)  (H = BG \cap DC)

(Do mặt phẳng (BMG) "lơ lửng" trong hình chóp nên ta kéo dài BM thành BA và BG thành BH để ta có cái nhìn dễ dàng hơn đối với mặt phẳng này).

(BMG) \cap (ACD) =AH

Trong (ABH): MG \cap AH =K

Vậy MG \cap (ACD) = K.

8 tháng 12 2021

a. Trong (BCD) có GD và BC cắt nhau tại K 

vậy K = GD và (ABC) 

b. có MG ⊂ (BMG) trùng (ABH) có H = BG và DC

(BMG) và (ACD) = AH 

Trong (ABH) có MG và AH = P 

Vậy MG và (ACD) = P