Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA
c. So sánh ∠(BAM) và ∠(MAC)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hbh
=>AB=CD
b: ABDC là hbh
=>AB//CD
AB=CD
AB<AC
=>CD<AC
=>góc CAD<góc CDA
=>góc CAD<góc BAD
Bạn tự vẽ hình nha
a.
Xét tam giác MBE và tam giác MCA có:
MB = CM (AM là trung tuyến của tam giác ABC => M là trung điểm của BC)
BME = CMA (2 góc đối đỉnh)
AM = EM (gt)
=> Tam giác MBE = Tam giác MCA (c.g.c)
=> BE = CA (2 cạnh tương ứng)
=> MEB = MAC (2 góc tương ứng)
mà 2 góc này ở vị trsi so le trong
=> BE // AC
b.
BE // AC (theo câu a)
=> AFD = BED (2 góc so le trong)
Xét tam giác DFA và tam giác DEB có:
AFD = BED (chứng minh trên)
DF = DE (gt)
FDA = EDB (2 góc đối đỉnh)
=> Tam giác DFA = Tam giác DEB (g.c.g)
=> FA = EB (2 cạnh tương ứng)
mà EB = AC (theo câu a)
=> FA = AC
=> A là trung điểm của FC
c.
Tam giác ABC có:
AB < AC (gt)
mà AC = EB (theo câu a)
=> AB < EB
=> BEM < BAM (quan hệ giữa góc và cạnh đối diện trong tam giác)
mà BEM = CAM (tam giác MBE = tam giác MCA)
=> CAM < BAM
Chúc bạn học tốt
Phương An giúp mình làm bài hình còn lai được không?
đề nè
cho góc nhọn xOy; trên tia Ox lấy A(A#O); trên tia Oy lấy điểm B (B # O)sao cho OA = OB; kẻ ACvuông góc với OY (CE Oy) ; BD vuông góc Ox ( D E Ox); I là giao diểm của AC và BD
a. chứng minh tam giác AOC= tam giác BOD
b. So sánh IC và IA
c. Chứng minh tam giác AIB cân
d. Chứng minh góc IAB=M góc 1\2 góc AOB
c. Trong tam giác ADC có CD < AC ⇒ ∠(DAC) < ∠(ADC) (1 điểm)
Mà ∠(BAM) = ∠(ADC) ( 2 góc tương ứng vì ΔABM = ΔDCM) (0.5 điểm)
Suy ra ∠(MAB) > ∠(MAC) (0.5 điểm)