1 + 27x3; x3 + 3x2 - 16x - 48. Phân tích đa thức thành nhân tử.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(27x3 – 1) : (3x – 1)
(Sử dụng HĐT để phân tích số bị chia thành tích)
= [(3x)3 – 1] : (3x – 1)
(Xuất hiện hằng đẳng thức (7))
= (3x – 1).[(3x)2 + 3x.1 + 12] : (3x – 1)
= (3x – 1).(9x2 + 3x + 1) : (3x – 1)
= 9x2 + 3x + 1
\(27x^3+27x^2+9x+1\)
\(=\left(3x\right)^3+3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2+1^3\)
\(=\left(3x+1\right)^3\)
(x-1)3+(2x+3)3=27x3+8
=> (x - 1 + 2x + 3)[(x - 1)2 - (x - 1)(2x + 3) + (2x + 3)2] = (3x)3 + 23
=> (3x + 2)[x2-2x+1-(2x2+x-3)+4x2+12x+9] = (3x + 2)[(3x)2 - 3x.2 + 22]
=> (3x + 2)(3x2 + 9x + 13) = (3x + 2)(9x2 - 6x + 4)
=> (3x + 2)(3x2 + 9x + 13) - (3x + 2)(9x2 - 6x + 4) = 0
=> (3x + 2)(3x2 + 9x + 13 - 9x2 + 6x - 4) = 0
=> (3x + 2)(-6x2 + 15x + 9) = 0
=>\(\left[{}\begin{matrix}3x+2=0\\-6x^2+15x+9=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}3x=-2\\-3\left(2x^2+5x\right)=-9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\2x^2+5x=3\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\2x^2+6x-x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\2x\left(x+3\right)-\left(x+3\right)=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\\left(2x-1\right)\left(x+3\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình (x-1)3+(2x+3)3=27x3+8 có nghiệm là {-2/3;1/2;-3}
=>x^3-3x^2+3x-1+8x^3+36x^2+54x+27=27x^3+8
=>37x^3+51x^2+57x+26-27x^3-8=0
=>10x^3+51x^2+57x+18=0
=>(5x+3)(2x^2+9x+6)=0
=>x=-3/5 hoặc \(x=\dfrac{-9\pm\sqrt{33}}{4}\)
\(a,=8\left(x^3-125\right)=8\left(x-5\right)\left(x^2+10x+25\right)\\ b,=\left(0,1+4x\right)\left(0,01-0,4x+16x^2\right)\\ d,=\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}y^2\right)\\ c,=\left(\dfrac{1}{5}y+x\right)\left(\dfrac{1}{25}y^2-\dfrac{1}{5}xy+x^2\right)\)
a, 8x3- 1000 = (2x)3 - 103 = (2x -10). (4x2 + 20x +100)
b,\(0,001+64x^3=\left(\dfrac{1}{10}\right)^3+\left(4x\right)^3=\left(\dfrac{1}{10}+4x\right).\left(\dfrac{1}{100}-\dfrac{2}{5}x+16x^2\right)\)
c, \(\dfrac{1}{125}y^3+x^3=\left(\dfrac{1}{5}y\right)^3+x^3=\left(\dfrac{1}{5}y+x\right).\left(\dfrac{1}{25}y^2-\dfrac{1}{5}yx+x^2\right)\)
\(d,27x^3-\dfrac{1}{8}y^3=\left(3x\right)^3-\left(\dfrac{1}{2}y\right)^3=\left(3x-\dfrac{1}{2}y\right).\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}y^2\right)\)
Ta có
( 27 x 3 + 27 x 2 + 9 x + 1 ) : ( 3 x + 1 ) 2 = ( 3 x + 1 ) 3 : ( 3 x + 1 ) 2 = 3 x + 1
Đáp án cần chọn là: B
a: \(1-\dfrac{x^3}{8}=\left(1-\dfrac{1}{2}x\right)\left(1+\dfrac{1}{2}x+\dfrac{1}{4}x^2\right)\)
b: \(27x^3+1=\left(3x+1\right)\left(9x^2-3x+1\right)\)
c: \(64x^3-27y^3=\left(4x-3y\right)\left(16x^2+12xy+9y^2\right)\)
\(27x^3+125y^3\)
\(=\left(3x\right)^3+\left(5y\right)^3\)
\(=\left(3x+5y\right)\left[\left(3x\right)^2-3x\cdot5y+\left(5y\right)^2\right]\)
\(=\left(3x+5y\right)\left(9x^2-15xy+25y^2\right)\)
\(27x^3+125y^3\)
\(=\left(3x\right)^3+\left(5y\right)^3\)
\(=\left(3x+5y\right)\left[\left(3x\right)^2-3x\cdot5y+\left(5y\right)^2\right]\)
\(=\left(3x+5y\right)\left(9x^2-15xy+25y^2\right)\)
\(1+27x^3\)
\(=\left(1+3x\right).\left(1-3x+9x^2\right)\)
\(x^3+3x^2-16x-48\)
\(=x^2.\left(x+3\right)-16.\left(x+3\right)\)
\(=\left(x^2-16\right).\left(x+3\right)\)
\(=\left(x-4\right).\left(x+4\right).\left(x+3\right)\)