Cho biết a < b. Trong các khẳng định sau, số khẳng định đúng là?
(I) a - 1 < b - 1 (II) a - 1 < b (III) a + 2 < b + 1
A. 1
B. 2
C. 3
D. 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Vì a < b, cộng hai vế của bất đẳng thức với -1 ta được a - 1 < b - 1 => (I) đúng.
+ Vì a - 1 < b - 1 (cmt) mà b - 1 < b nên a - 1 < b => (II) đúng
+ Vì a < b, cộng hai vế của bất đẳng thức với 1 ta được a + 1 < b + 1 mà
a + 1 < a + 2 nên ta chưa đủ dữ kiện để nói rằng a + 2 < b + 1 => (III) sai.
Vậy có 1 khẳng định sai.
Đáp án cần chọn là: A
Đáp án C
Ta có sai vì chưa có điều kiện b > 0 ; c > 0 . Vậy khẳng định đúng.
Ta có:
+) Khẳng định i): a > 2019 thì a x > 2019 x ∀ x ∈ ℝ ⇒ x = 1 khẳng định sai.
+) Khẳng định ii): a > 2019 thì b a > b 2019 ∀ b > 0 ⇔ b > 0 khẳng định sai.
+) Khẳng định iii): a > 2019 thì log b a > log b 2019 ∀ n > 0 ; b ≢ 0 ⇔ b > 1 khẳng định sai
Chọn A.
+ Vì a < b, cộng hai vế của bất đẳng thức với -1 ta được: a - 1 < b - 1 => (I) đúng.
+ Vì a - 1 < b - 1 (cmt) mà b - 1 < b nên a - 1 < b => (II) đúng.
+ Vì a < b, cộng hai vế của bất đẳng thức với 1 ta được: a + 1 < b + 1 mà
a + 1 < a + 2 nên ta chưa đủ dữ kiện để nói rằng a + 2 < b + 1 => (III) sai.
Do đó có 2 khẳng định đúng.
Đáp án cần chọn là: B