Cho tam giác ABC( có ba góc nhọn ) kẻ tia Ax song song với BC (Ax và AC cùng thuộc nửa mặt phẳng bờ AB ) Trên tia Ax lấy D sao cho AD=BC chứng minh
a) tam giác ADC = tam giác CAB
b) góc BAD bằng góc DCB c) AB song song với DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔADC và ΔCBA có
AD=CB(gt)
\(\widehat{DAC}=\widehat{BCA}\)(Hai góc so le trong, AD//BC)
AC chung
Do đó: ΔADC=ΔCBA(c-g-c)
b) Ta có: ΔADC=ΔCBA(cmt)
nên \(\widehat{DCA}=\widehat{BAC}\)(hai góc tương ứng)
Ta có: \(\widehat{BAD}=\widehat{BAC}+\widehat{DAC}\)(tia AC nằm giữa hai tia AB,AD)
\(\widehat{BCD}=\widehat{BCA}+\widehat{DCA}\)(tia CA nằm giữa hai tia CB,CD)
mà \(\widehat{DCA}=\widehat{BAC}\)(cmt)
và \(\widehat{DAC}=\widehat{BCA}\)(hai góc so le trong, AD//BC)
nên \(\widehat{BAD}=\widehat{BCD}\)(đpcm)
c) Ta có: \(\widehat{DCA}=\widehat{BAC}\)(cmt)
mà \(\widehat{DCA}\) và \(\widehat{BAC}\) là hai góc ở vị trí so le trong
nên AB//DC(Dấu hiệu nhận biết hai đường thẳng song song)
vẽ hình cho mik đi bn đc k