Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình sau có nghiệm thực trong đoạn 5 4 ; 4 m - 1 + log 1 2 2 x - 2 2 + 4 m - 5 log 1 2 1 x - 2 + 4 m - 4 = 0
A. m > 7 3
B. - 3 < m < 7 3
C. - 3 ≤ m ≤ 7 3
D. m < - 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Ta có hàm số g(x) = x 3 - 3 x 2 + 2 = m là hàm số chẵn nên đồ thị nhận trục Oy làm trục đối xứng.
+ Khi x≥ 0 ; g(x) = x3- 3x2+ 2
Do đó; đồ thị hàm số g(x) = x 3 - 3 x 2 + 2 có dạng như hình vẽ.
+ Dựa vào đồ thị suy ra phương trình x 3 - 3 x 2 + 2 = m có nhiều nghiệm thực nhất khi và chỉ khi -2< m< 2.
Chọn C.
Để xét bất phương trình bậc nhất vô nghiệm hay luôn đúng với mọi x ta chỉ cần xét hệ số a= 0.
* Với m = 0 thì bất phương trình đã cho trở thành:
0 x ≤ 0 ( luôn đúng với mọi x) ( loại)
* Với m = -3 thì bất phương trình đã cho trở thành:
0 x ≤ 9 (luôn đúng với mọi x) ( loại)
Vậy không có giá trị nào của m để bất phương trình đã cho vô nghiệm
* Nếu m= 0 thì bất phương trình đã cho trở thành:
0x < 0( luôn đúng với mọi x).
* Nếu m= 1 thì bất phương trình đã cho trở thành:
0x < 1 ( luôn đúng với mọi x)
Tập tất cả các giá trị của tham số m để bất phương trình đã cho nghiệm đúng với mọi x là {0; 1}
Ta có 2 x - 1 ≥ 3 x - m ≤ 0 ⇔ x ≥ 2 x ≤ m . Hệ có nghiệm duy nhất khi và chỉ khi m = 2
Đáp án đúng : C