Từ các chữ số 0, 1, 2, 3, ,4 ,5 ,6 lập thành số tự nhiên chẵn có 5 chữ số phân biệt nhỏ hơn 25000. Tính số các số lập được
A. 360
B. 370
C. 380
D. 400
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần lập là \(\overline{abcde}\)
TH1: \(a=1\)
\(\Rightarrow e\) có 4 cách chọn (0;2;4;6)
Bộ bcd có \(A_5^3=60\) cách
\(\Rightarrow4.60=240\) số
TH2: \(a=2\) \(\Rightarrow b< 5\)
- Nếu \(b=\left\{0;4\right\}\) (2 cách) \(\Rightarrow\) e có 1 cách chọn (6)
Bộ cd có \(A_4^2=12\) cách
\(\Rightarrow2.1.12=24\) số
- Nếu \(b=\left\{1;3\right\}\) (2 cách) \(\Rightarrow\) e có 3 cách chọn (0;4;6)
Bộ cd có \(A_4^2=12\) cách
\(\Rightarrow2.3.12=72\) số
Tổng cộng: \(240+24+72=336\) số
Gọi số tự nhiên cần tìm có dạng \(\overline{abcde}\)
Do a chỉ thuộc {1;2} nên ta chia 2 trường hợp
Trường hợp a=2(b<5):
b có 5 cách chọn
c có 5 cách chọn
d có 4 cách chọn
e có 3 cách chọn
Do đó với trường hợp a=2 ta có: 5.5.4.3=300(cách)
Trường hợp a=1:
b có 6 cách chọn
c có 5 cách chọn
d có 4 cách chọn
e có 3 cách chọn
Do đó trường hợp a=1 có 6.5.4.3=360(cách)
Từ đó để lập được các số tự nhiên thõa đề có: 300+360=660(cách)
Bạn có thể kiểm tra kỹ lại, trong quá trình làm có thể có sai xót về số nhưng hướng làm thì ổn rồi
Các số có dạng abcd( a<6 và khác 0; a,b,c,d<10)
Từ 7 chữ số: 1 ;2 ;3 ;4; 5; 6; 7
Có 5 cách chọn a( a<6)
Có 7 cách chọn b
Có 7 cách chọn c
có 3 cách chọn d( d =2;4;6)
Mỗi cách ta được 1 số
=> Có số số thỏa mãn đề bài là:
5.7.7.3=735( số)
Đ/s: 735 số
#YH
Các số là:
2035;2053;2305;2350;2503;2530;3025;3052;3205;3250;3502;3520;5023;5032;5203;5230;5302;5320
2035+2053+2305+2350+2503+2530+3025+3052+3205+3250+3502+3520+5023+5032+5203+5230+5302+5320=44563
a: \(\overline{abc}\)
a có 3 cáhc
b có 4 cáhc
c có 4 cách
=>Có 3*4*4=48 cách
b: \(\overline{abcd}\)
a có 3 cách
b có 3 cách
c có 2 cách
d có 1 cách
=>Có 3*3*2=18 cách
c: \(\overline{abc}\)
c có 1 cách
a có 3 cách
b có 4 cách
=>Có 1*3*4=12 cách
d: \(\overline{abcd}\)
TH1: d=0
=>Có 3*4*4=48 cách
TH2: d<>0
d có 2 cách
a có 3 cách
b có 4 cách
c có 4 cách
=>Có 4*4*3*2=16*6=96 cách
=>Có 144 cách
Giải
a, Có 6 chữ số khác nhau
Gọi số cần tìm là \(\overline{abcdef}\)
a có 5 cách chọn ( \(a\ne0\))
\(\overline{bcedf}\)có 5! cách chọn
=> Có tất cả 5.5! = 600 (số)
Vậy có 600 số có 6 chữ số khác nhau
b, Gọi số có 4 chữ số cần tìm là \(\overline{abcd}\)
Vì \(\overline{abcd}\) là số chẵn nên d \(\in\left(0,2,4\right)\)
TH1: d=0
\(\overline{abc}\) có \(A_5^3\) cách chọn => 60 cách chọn
TH2 : d=(2,4) -> có 2 cách chọn
a có 4 cách chọn ( a khác 0,d)
b có 4 cách chọn ( b khác a,d)
c có 3 cách chọn ( c khác a,b,d)
=> 4.4.3.2=96 số
Nên kết hợp hai trường hợp ta có 60+96=156 ( số)
Vậy có 156 số có 4 chữ số chẵn khác nhau
c, Gọi số có 3 chữ số khác nhau là \(\overline{abc}\)
TH1:
a = {4,5} -> có 2 cách
\(\overline{bc}\) có \(A_4^2\) cách chọn
=> Có 2.\(A_4^2\)=2.12=24 số
TH2: a=3 -> có 1 cách
b={1,2,4,5} -> có 4 cách
c có 4 cách ( c khác a,b)
=> 4.4=16 (số)
TH3: a=3 -> có 1 cách chọn
b=0-> có 1 cách chọn
c={1,2,4,5} -> có 4 cách chọn
=> có 4 số
Nên ta có 24+16+4=44( số)
Vậy có tất cả 44 số có 3 chữ số khác nhau lớn hơn 300
Gọi số cần lập là A = a 1 a 2 a 3 a 4 a 5 với 1 ≤ a 1 ≤ 2 .
+ Trường hợp 1: a 1 = 1.
Có 4 cách chọn a 5 và A 5 3 cách chọn các chữ số còn lại nên có 4 . A 5 3 số.
+ Trường hợp 2: a 1 = 2; a 2 lẻ.
Có 2 cách chọn a 2 , 3 cách chọn a 5 và A 4 2 cách chọn các chữ số còn lại nên có 2 . 3 . A 4 2 = 72 số.
+ Trường hợp 3: a 1 = 2; a 2 chẵn.
Có 2 cách chọn a 2 , 2 cách chọn a 3 và A 4 2 cách chọn các chữ số còn lại nên có 2 . 2 . A 4 2 = 48 số.
Vậy có 240 + 72 + 48 = 360 số
Đáp án A