Cho hình lăng trụ đứng ABC.A'B'C' đáy ABC là tam giác đều, I là trung điểm của AB. Kí hiệu d(AA',BC) là khoảng cách giữa 2 đường thẳng AA' và BC thì:
A. d(AA',BC) = AB
B. d(AA',BC) = IC
C. d(AA',BC) = A'B
D. d(AA',BC) = AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Tam giác ABC vuông và AB=BC=a nên ΔABC chỉ có thể vuông tại B.
Ta có A B ⊥ B C A B ⊥ B B ' ⇒ A B ⊥ B C B '
Kẻ
⇒ d = d B ' C , M N = d B ' C , A M N = d C , A M N = d B , A M N
Tứ diện BAMN là tứ diện vuông
Đáp án A
Gọi E là trung điểm của BB' => ME//B'C => (AME)//B'C
= d(C;(AME))
Vì
Gọi h là khoảng cách từ B đến mặt phẳng (AME).
Do tứ diện BAME có BA, BM, BE đôi một vuông góc nên :
Lời giải.
Gọi H là trung điểm của BB' => HM//B'C
Theo đề, ABC.A'B'C' là lăng trụ đứng và ∆ ABC vuông tại B (vì AB = BC = a)
=> tứ diện BAHM có BA, BH, BM đôi một vuông góc nhau. Khi đó
Gọi N là trung điểm của BB’, ta có: CB’ // MN nên CB’ // (AMN). Như vậy
d(BC’, AM) = d(B’, (AMN)) = d(B, (AMN))
(vì B, B’ đối xứng qua N ∈ (AMN)).
Hạ BH ⊥ (AMN), ta có d(B, (AMN)) = BH.
Nhận xét:
Tứ diện B.AMN có ba cạnh BA, BM, BN vuông góc nhau từng đôi một nên
Từ giả thiết ta suy ra tam giác ABC là tam giác vuông cân tại B
Thể tích của khối lăng trụ là \(V_{ABC.A'B'C'}=AA'.BC=a\sqrt{2.}\frac{1}{2}a^2=\frac{\sqrt{2}}{2}a^3\)
Gọi E là trung điểm của BB'. Khi đó mặt phẳng (AME) song song với B'C nên khoảng cách giữa 2 đường thẳng AM, B'C bằng khoảng cách giữa B'C và mặt phẳng (AME)
Nhận thấy, khoảng cách từ B đến mặt phẳng (AME) bằng khoảng cách từ C đến mặt phẳng (AME)
Gọi h là khoảng cách từ B đến mặt phẳng (AME). Do đó tứ diện BAME có BA, BM, BE đôi một vuông góc với nhau nên :
\(\frac{1}{h^2}=\frac{1}{BA^2}+\frac{1}{BM^2}+\frac{1}{BE^2}\Rightarrow\frac{1}{h^2}=\frac{1}{a^2}+\frac{4}{a^2}+\frac{2}{a^2}=\frac{7}{a^2}\)
\(\Rightarrow h=\frac{a\sqrt{7}}{7}\)
Vậy khoảng cách giữa 2 đường thẳng B'C và AM bằng \(\frac{a\sqrt{7}}{7}\)
Đáp án là A
Gọi E là trung điểm của B B ' . Khi đó B ' C / / A M E ⇒ d A M ; B ' C = d B ' C ; A M E .
Mặt khác d B ; A M E = d C ; A M E . Gọi h = d B ; A M E
Vì tứ diện B A M E có B A ; B M ; B E đôi một vuông góc với nhau.
⇒ 1 h 2 = 1 B A 2 + 1 B M 2 + 1 B E 2 ⇒ 1 h 2 = 1 a 2 + 4 a 2 + 2 a 2 = 7 a 2 ⇒ h = a 7 7 ⇒ d B ' C ; A M = a 7 7 .
Đáp án B.
Gọi M là trung điểm của BC (ABC là tam giác đều)
(tam giác ABC đều)
(AM: gọi là đường vuông góc chung của 2 đường thẳng chéo nhau AA', BC).