K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2018

 

Đáp án B.

 

Gọi M là trung điểm của BC (ABC là tam giác đều)

 (tam giác ABC đều)

(AM: gọi là đường vuông góc chung của 2 đường thẳng chéo nhau AA', BC).

23 tháng 5 2019

18 tháng 6 2017

Chọn C


Tam giác ABC vuông và AB=BC=a nên ΔABC chỉ có thể vuông tại B.

Ta có  A B ⊥ B C A B ⊥ B B ' ⇒ A B ⊥ B C B '

Kẻ 

⇒ d = d B ' C ,   M N = d B ' C ,   A M N = d C ,   A M N = d B ,   A M N

Tứ diện BAMN là tứ diện vuông

15 tháng 2 2018

Đáp án A

Gọi E là trung điểm của BB' => ME//B'C => (AME)//B'C

= d(C;(AME))

Vì 

Gọi h là khoảng cách từ B đến mặt phẳng (AME).

Do tứ diện BAME có BA, BM, BE đôi một vuông góc nên :

31 tháng 10 2018

Lời giải.

Gọi H là trung điểm của BB' => HM//B'C

Theo đề, ABC.A'B'C' là lăng trụ đứng và  ∆ ABC vuông tại B (vì AB = BC = a)

=> tứ diện BAHM có BA, BH, BM đôi một vuông góc nhau. Khi đó

25 tháng 4 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Gọi N là trung điểm của BB’, ta có: CB’ // MN nên CB’ // (AMN). Như vậy

d(BC’, AM) = d(B’, (AMN)) = d(B, (AMN))

(vì B, B’ đối xứng qua N ∈ (AMN)).

Hạ BH ⊥ (AMN), ta có d(B, (AMN)) = BH.

Nhận xét:

Tứ diện B.AMN có ba cạnh BA, BM, BN vuông góc nhau từng đôi một nên

Giải sách bài tập Toán 11 | Giải sbt Toán 11

29 tháng 12 2019

1 tháng 8 2017

Đáp án B

Trong ABC dựng D sao cho ABCD là hình bình hành.

2 tháng 4 2016

A B C B' C' A' E M

Từ giả thiết ta suy ra tam giác ABC là tam giác vuông cân tại B

Thể tích của khối lăng trụ là \(V_{ABC.A'B'C'}=AA'.BC=a\sqrt{2.}\frac{1}{2}a^2=\frac{\sqrt{2}}{2}a^3\)

Gọi E là trung điểm của BB'. Khi đó mặt phẳng (AME) song song với B'C nên khoảng cách giữa 2 đường thẳng AM, B'C bằng khoảng cách giữa B'C và mặt phẳng (AME)

Nhận thấy, khoảng cách từ B đến mặt phẳng (AME) bằng khoảng cách từ C đến mặt phẳng (AME)

Gọi h là khoảng cách từ B đến mặt phẳng (AME). Do đó tứ diện BAME có BA, BM, BE đôi một vuông góc với nhau nên :

\(\frac{1}{h^2}=\frac{1}{BA^2}+\frac{1}{BM^2}+\frac{1}{BE^2}\Rightarrow\frac{1}{h^2}=\frac{1}{a^2}+\frac{4}{a^2}+\frac{2}{a^2}=\frac{7}{a^2}\)

\(\Rightarrow h=\frac{a\sqrt{7}}{7}\)

Vậy khoảng cách giữa 2 đường thẳng B'C và AM bằng \(\frac{a\sqrt{7}}{7}\)

9 tháng 7 2017

Đáp án A

Gọi E  là trung điểm của B B ' .  Khi đó  B ' C / / A M E ⇒ d A M ; B ' C = d B ' C ; A M E .

Mặt khác d B ; A M E = d C ; A M E . Gọi  h = d B ; A M E

Vì tứ diện B A M E  có B A ; B M ; B E  đôi một vuông góc với nhau.

⇒ 1 h 2 = 1 B A 2 + 1 B M 2 + 1 B E 2 ⇒ 1 h 2 = 1 a 2 + 4 a 2 + 2 a 2 = 7 a 2 ⇒ h = a 7 7 ⇒ d B ' C ; A M = a 7 7 .