Chứng minh rằng:
a) 2n+1và 6n+5 là hai số nguyên tố cùng nhau
b) 2n+1và 2n+3 là hai số nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu trả lời hay nhất: Gọi d = (12n + 1 , 30n + 2)
=> 12n + 1 chia hết cho d và 30n + 2 chia hết cho d
=> 5(12n + 1) - 2(30n + 2) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau
2n+1 chia hết d
6n+3 chia hết cho d
3n+1 chia hết cho d
6n+2 chia hết cho d
( 6n+3) - ( 6n+2 ) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)
Ư(1) = 1
=> d =1 mà hai số nguyên tố có ước chung lớn nhất =1
=> 2n +1 và 3n+1 là hai số nguyên tố cùng nhau
Gọi d là Ước chung lớn nhất của 2n + 1 và 6n + 5
=> ( 6n + 5 ) - ( 2n + 1 ) chia hết cho d
=> ( 6n + 5 ) - 3( 2n + 1 ) chia hết cho d
=> ( 6n + 5 ) - ( 6n + 3 ) chia hết cho d
=> 2 chia hết cho d
Vậy ước chung lớn nhất của 2n + 1 và 6n + 5 là 2 .
Gọi a là ƯCLN(2n+1, 6n+5)
ta có: 2n+1 chia hết cho a và 6n+5 chia hết cho a
3.(2n+1) chia hết cho a và (6n + 5) chia hết cho a
6n+3 chia hết cho a và 6n+5 chia hết cho a
[(6n+5) - (6n+3)] chia hết cho a
[6n+5 - 6n -3] chia hết cho a
2 chia hết cho a suy ra a = 2 hoặc 1
Vậy 6n+5 và 2n+1 là hai số nguyên tố chung
Gọi ƯCLN của 2n+5 và 6n+13 là d(d thuộc N sao)
=> 2n+5 và 6n+13 đều chia hết cho d
=> 3.(2n+5) và 6n+13 đểu chia hết cho d
=> 6n+15 và 6n+13 đều chia hết cho d => 6n+15-(6n+13) chia hết cho d hay 2 chia hết cho d (1)
Mà 2n chẵn nên 2n+5 lẻ => d lẻ (1)=> d =1 (vì d thuộc N sao)
=> 2n+5 và 6n+13 là 2 số nguyên tố cùng nhau (ĐPCM)
gọi a là ước chung lớn nhất của 2n+1 và 3n+2
do đó a phải là ước của \(2\left(3n+2\right)-3\left(2n+1\right)=1\) do đó a=1
hay 2n+1 và 3n+2 là hai số nguyên tố cùng nhau.
b.gọi b là ước chung lớn nhất của 2n+3 và 4n+5
do đó b phải là ước của \(2\left(2n+3\right)-\left(4n+5\right)=1\)do đó b=1
hay 2n+3 và 4n+5 là hai số nguyên tố cùng nhau
Gọi (2n + 1,6n + 5) = d (d \(\in\)N)
=> 2n + 1 chia hết cho d và 6n + 5 chia hết cho d
=> 3 . (2n + 1) chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 5 - (6n + 3) chia hết cho d
hay 2 chia hết cho d => d \(\in\)Ư(2) => d \(\in\){-2;-1;1;2}
Mà d là lớn nhất nên d = 2
Ta thấy 6n + 5 ko chia hết cho 2 và 2n + 1 ko chia hết cho 2
=> (2n + 1,6n + 5) = 1
Vậy 2n + 1 và 6n + 5 là 2 số nguyên tố cùng nhau với mọi n thuộc N
Ủng hộ mk nha !!! ^_^
Gọi d là Ưcln của 2n + 1 và 6n + 5
Khi đó : 2n + 1 chia hết cho d và 6n + 5 chia hết cho d
<=> 3.(2n + 1) chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d
=> (6n + 5) - (6n + 3) chia hết cho d => 2 chia hết cho d
Mà ưc của 2 là 1 => d = 1
VậY (đpcm_)
a, Gọi d là ƯCLN(2n+1,3n+1)
Có: 2n+1chia hết cho 2n+1
Suy ra: 3.(2n+1)chia hết cho 2n+1 hay 6n+3 chia hết cho 2n+1
Lại có 3n+1 chia hết 3n+1
Nên 2.(3n+1) chia hết cho 3n+1 hay 6n+2 chia hết cho 3n+1
Do đó (6n+3)-(6n+2) chia hết cho d
Hay 1 chia hết cho d
Suy ra d=1
Mà 2 số nguyên tố cùng nhau có ƯCLN là 1
Vậy 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau
P/s: nếu đúng thì hãy cho **** nha! ^-^
Giả sử 2n+1 và 6n+5 ko phải là 2 số nguyên tố cùng nhau thì:
cho d là ƯCLN của chúng và d>1
ta có:2n+1chia hết cho d,vậy 6n+3 cũng chia hết cho d
suy ra:6n+5-(6n+3) chia hết cho d
vậy 2 chia hết cho d
mà các ƯC của 2 là :2 và 1
mà cả 2 số đã cho đều là số lẻ,nên d phải bằng 1
nhưng như vậy thì trái với giả thuyết mà chúng ta đặt ra ban đầu
vậy 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau
Gọi d là ƯCLN của 2n + 1 và 2 n + 3
Ta có : 2n + 1 chia hết cho d
2n + 3 chia hết cho d
=> ( 2n + 3 ) - ( 2n + 1 ) chia hết cho d
2 chia hết cho d => d là Ư của 2
Mà Ư(2) = { 1 ; 2 }
Mà d lẻ => d = 1
Vậy 2 n + 1 và 2n + 3 nguyên tố cùng nhau
a) gọi d là UC(2n+1;6n+5)
2n+1 chia hết cho d nên 3(2n+1)=6n+3 cũng chia hết cho d
(6n+5)-(6n+3) chia hết cho d
vậy 2 chia hết cho d mà d thuộc U(2)={1;2}
2n+1 và 6n+5 đều là số lẻ nên d =1
vậy 2 số trên là 2 số nguyên tố cúng nhau
b) tương tự như câu a
tích mình nhé Hoa!!!!!!!!!!!!