K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

Chọn đáp án D

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

1 tháng 11 2018

Chọn đáp án D

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

18 tháng 3 2017

Ta chứng minh  A D ^ = B E ^ , mà CD ⊥ AB nên từ đó suy ra

* Cách khác:Chứng minh  A O C ^ = B O E ^ => ĐPCM

22 tháng 8 2017

a, Tính được sđ  B E ⏜ = 50 0

b, Chứng minh được sđ  C B E ⏜ = 180 0

=> C, O, E thẳng hàng (ĐPCM)

a) Ta có: AB//DE(gt)

CD⊥AB(gt)

Do đó: DE⊥CD(Định lí 2 từ vuông góc tới song song)

\(\widehat{CDE}=90^0\)

Xét ΔCDE có \(\widehat{CDE}=90^0\)(cmt)

nên ΔCDE vuông tại D(Định nghĩa tam giác vuông)

⇔D nằm trên đường tròn đường kính CE

⇔C,D,E nằm trên đường tròn đường kính CE

mà C,D,E cùng nằm trên (O)(gt)

nên CE là đường kính của (O)

hay C,O,E thẳng hàng(đpcm)

22 tháng 2 2021

Câu a tính số đoa cứng nhỏ BE mà bạn 

a: AM//BN

=>AMBN là hình thang

=>góc MAN+góc ANB=180 độ

=>góc NAM=góc AMB

=>AN//MB

mà AM//BN

nên AMBN là hình bình hành

=>BM=AD và AB cắt MN tại trung điểm của mỗi đường

=>O là trung điểm của MN

b: MD//AB

Xét ΔMDN có

góc MDN là góc nội tiếp chắn nửa đường tròn

=>góc MDN=90 độ

=>MD vuông góc DN

=>DN vuông góc AB

c: ΔODN cân tại O

mà OE là đường cao

nên E là trung điểm của DN

=>DE=EN

26 tháng 11 2023

a: Xét (O) có

ΔBAC nội tiếp

AC là đường kính

Do đó: ΔBAC vuông tại B

Xét (O) có

\(\widehat{BAC}\) là góc nội tiếp chắn cung BC

Do đó: \(\widehat{BAC}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BC}=\dfrac{1}{2}\cdot60^0=30^0\)

Gọi H là giao điểm của BD với AC

BD\(\perp\)AC nên BD\(\perp\)AC tại H

ΔOBD cân tại O

mà OH là đường cao

nên H là trung điểm của BD

Xét ΔCBD có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCBD cân tại C

=>CB=CD

Xét ΔCOD và ΔCOB có

CD=CB

OD=OB

CO chung

Do đó: ΔCOD=ΔCOB

=>\(\widehat{COD}=\widehat{COB}\)

=>\(sđ\stackrel\frown{CB}=sđ\stackrel\frown{CD}=60^0\)

Xét ΔBAC vuông tại B có \(\widehat{BAC}+\widehat{BCA}=90^0\)

=>\(\widehat{BCA}+30^0=90^0\)

=>\(\widehat{BCA}=60^0\)

Xét (O) có

\(\widehat{BCA}\) là góc nội tiếp chắn cung AB

Do đó: \(\widehat{BCA}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AB}\)

=>\(sđ\stackrel\frown{AB}=2\cdot\widehat{BCA}=120^0\)

DF//AC

DB\(\perp\)AC

Do đó: DF\(\perp\)DB

=>ΔDFB vuông tại D

ΔDFB vuông tại D

nên ΔDFB nội tiếp đường tròn đường kính BF

mà ΔDFB nội tiếp (O)

nên O là trung điểm của BF

=>OA//DF

=>\(\widehat{BFD}=\widehat{BOH}=\widehat{BOC}\)(hai góc đồng vị)

=>\(\widehat{BFD}=60^0\)

ΔBDF vuông tại D

=>\(\widehat{BFD}+\widehat{FBD}=90^0\)

=>\(\widehat{FBD}+60^0=90^0\)

=>\(\widehat{FBD}=30^0\)

Xét (O) có

\(\widehat{FBD}\) là góc nội tiếp chắn cung FD

Do đó: \(\widehat{FBD}=\dfrac{1}{2}\cdot sđ\stackrel\frown{FD}\)

=>\(sđ\stackrel\frown{FD}=2\cdot\widehat{FBD}=2\cdot\)30=60 độ