K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2019

x 2  - 3x + m - 5 = 0

a = 1; b = -3; c = m – 5

Δ = b 2 - 4ac = - 3 2 - 4(m - 5) = 29 - 4m

Phương trình có 2 nghiệm phân biệt x 1 ; x 2  khi và chỉ khi

Δ > 0 ⇔ 29 - 4m > 0 ⇔ m < 29/4

Theo định lí Vi-et ta có:

x 1 ; x 2  = c/a = m - 5

Theo bài ra

x 1 ; x 2 = 4 ⇔ m - 5 = 4 ⇔ m = 9 (Không TMĐK m < 29/4)

Vậy không tồn tại m thỏa mãn đề bài.

a: x^2+2xm+m^2=0

Khi m=5 thì pt sẽ là x^2+10x+25=0

=>x=-5

b: Thay x=-2 vào pt, ta được:

4-4m+m^2=0

=>m=2

6 tháng 12 2020

Theo định lí Vi-ét: \(\hept{\begin{cases}x_1+x_2=\frac{2m+2}{3}\\x_1x_2=\frac{3m-5}{3}\end{cases}}\)

Ko mất tính tổng quát, giả sử \(x_1=3x_2\)

Có: \(\hept{\begin{cases}x_1=3x_2\\x_1+x_2=\frac{2m+2}{3}\end{cases}\Rightarrow}\hept{\begin{cases}x_1=\frac{m+1}{2}\\x_2=\frac{m+1}{6}\end{cases}}\)

Mà \(x_1x_2=\frac{3m-5}{3}\Rightarrow\frac{m+1}{2}.\frac{m+1}{6}=\frac{3m-5}{3}\)

\(\Leftrightarrow4\left(m+1\right)^2=3m-5\Leftrightarrow4m^2+5m+9=0\)(vô nghiệm)

Vậy ko tồn tại m thỏa mãn

17 tháng 3 2022

1, Thay m=6 vào pt ta có:

\(x^2-\left(6-2\right)x-6+5=0\\ \Leftrightarrow x^2-4x-1=0\)

\(\Delta=\left(-4\right)^2-4.1.\left(-1\right)=16+4=20\)

\(x_1=\dfrac{4+2\sqrt{5}}{2}=2+\sqrt{5},x_2=\dfrac{4-2\sqrt{5}}{2}=2-\sqrt{5}\)

\(2,\Delta=\left[-\left(m-2\right)\right]^2-4\left(-m+5\right)\\ =m^2-4m+4+4m-20\\ =m^2-16\)

Để pt có 2 nghiệm phân biệt thì

\(\Delta>0\\ \Leftrightarrow m^2-16>0\\ \Leftrightarrow\left[{}\begin{matrix}m>4\\m< -4\end{matrix}\right.\)

a, \(x^2-3x-6+4=0\)

\(\Leftrightarrow x^2-3x-2=0\)

Ta có : \(\left(-3\right)^2-4.\left(-2\right)=9+8=17>0\)

Nên có 2 nghiệm phân biệt 

\(x_1=\frac{3-\sqrt{17}}{2};x_2=\frac{3+\sqrt{17}}{2}\)

b, Để PT có nghiệm thì \(\Delta=0\)

\(\Leftrightarrow b^2-4ac=0\)

\(\Leftrightarrow\left(-3\right)^2-4\left(-m+4\right)=0\)

\(\Leftrightarrow9+4m-16=0\)

\(\Leftrightarrow7+4m=0\)

\(\Leftrightarrow m=-\frac{7}{4}\)

Vậy => m = -7/4 

c, Ko rõ 

Sửa đề: \(x^2+\left(m+3\right)x+2m+2=0\)

a: Để phương trình có hai nghiệm trái dấu thì 2m+2<0

hay m<-1

b: \(\text{Δ}=\left(m+3\right)^2-4\left(2m+2\right)\)

\(=m^2+6m+9-8m-8\)

\(=m^2-2m+1=\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm với mọi m 

Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m-1< >0\\2m+2>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m< >1\end{matrix}\right.\)

a: Thay m=5 vào pt, ta được:

\(x^2+12x+25=0\)

\(\Leftrightarrow x^2+12x+36=11\)

\(\Leftrightarrow\left(x+6\right)^2=11\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{11}-6\\x=\sqrt{11}-6\end{matrix}\right.\)

b:

\(\text{Δ}=\left(2m+2\right)^2-4m^2=8m+4\)

Để phương trình có hai nghiệm phân biệt thì 8m+4>0

hay m>-1/2

Thay x=-2 vào pt, ta được:

\(4-4\left(m+1\right)+m^2=0\)

\(\Leftrightarrow m^2-4m=0\)

\(\Leftrightarrow m\left(m-4\right)=0\)

=>m=0(nhận) hoặc m=4(nhận)