Tính tích
A = ( 1 - 1 2010 ) ( 1 - 2 2010 ) ( 1 - 3 2010 ) . . . ( 1 - 2011 2010 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(1-\frac{2010}{2010}=1-1=0\)
Tích A= (1-1/2010).(1-2/2010).(1-3/2010)....(1-2011/2010) chứa thừa số \(1-\frac{2010}{2010}=0\)
Vậy tích A=(1-1/2010).(1-2/2010).(1-3/2010)....(1-2011/2010)=0(Vì có chứa thừa số 0)
\(A=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right).....\left(1-\frac{2011}{2010}\right)\)
\(A=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right).....\left(1-\frac{2010}{2010}\right).\left(1-\frac{2011}{2010}\right)\)
\(A=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right).....\left(1-1\right).\left(1-\frac{2011}{2010}\right)\)
\(A=\left(1-\frac{1}{2010}\right)\left(1-\frac{2}{2010}\right)\left(1-\frac{3}{2010}\right)....0.\left(1-\frac{2011}{2010}\right)\)
\(A=0\)
\(A=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right)...\left(1-\frac{2011}{2010}\right)\)
\(A=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right)...\left(1-\frac{2010}{2010}\right).\left(1-\frac{2011}{2010}\right)\)
\(A=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right)...0.\left(1-\frac{2011}{2010}\right)\)
\(\Rightarrow A=0\)
( Vì 0 nhân với số nào cũng bằng 0 )
A=\(\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right)...\left(1-\frac{2010}{2010}\right)\left(1-\frac{2011}{2010}\right)\)
A=\(\frac{2009}{2010}.\frac{2008}{2010}...0.\frac{-1}{2010}\)
A=0
\(A=\dfrac{2009}{2010}\cdot\dfrac{2008}{2010}\cdot...\cdot\dfrac{2}{2010}\cdot\dfrac{1}{2010}\cdot\dfrac{0}{2010}\cdot\dfrac{-1}{2010}\)
=0
Ta có \(B=\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{2}{2010}+1\right)+\left(\frac{1}{2011}+1\right)+1\)
\(B=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2010}+\frac{2012}{2011}+\frac{2012}{2012}\)
\(B=2012.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)\)
B=2012.A
=>A/B=1/2012
\(B=\left(1-\frac{1}{2010}\right)x\left(1-\frac{2}{2010}\right)x\left(1-\frac{3}{2010}\right)x...x\left(1-\frac{2011}{2010}\right)\)
\(B=\left(1-\frac{1}{2010}\right)x\left(1-\frac{2}{2010}\right)x\left(1-\frac{3}{2010}\right)x....x\left(1-\frac{2010}{2010}\right)x\left(1-\frac{2011}{2010}\right)\)
\(B=\left(1-\frac{1}{2010}\right)x\left(1-\frac{2}{2010}\right)x\left(1-\frac{3}{2010}\right)x...x\left(0\right)x\left(1-\frac{2011}{2010}\right)\)
\(B=0\)
Trong tích của A có một thừa số bằng 1-2010/2010=0