Số phần tử của tập hợp các số x thỏa mãn |x-2,5|+|3,5-x| là { }
giúp với. tick liền
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|x - 2,5| + |3,5 - x| = 0
Vì |x - 2,5| \(\ge\)0; |3,5 - x| \(\ge\) 0 nên |x - 2,5| = 0 và |3,5 - x| = 0
=> x - 2,5 = 0 và 3,5 - x = 0 => x = 2,5 và x = 3,5 => 2,5 = 3,5 (Vô lí)
vậy không có x thỏa mãn
Tổng 2 số không âm bằng 0 khi và chỉ khi
x+2,5=0 và 3,5-x=0
<=> x=-2,5 và x=3,5 (vô lí)
Vậy không có phần tử x nào thỏa mãn điều kiện trên.
=> x-2,5 = 0và 3,5-x = 0
=> x = 2,5 và x = 3,5
=> ko có x thỏa mãn
:
\(\left|x-2,5\right|+\left|3,5-x\right|=0\)
ta có \(\left|x-2,5\right|\ge0\)
\(\left|3,5-x\right|\ge0\)
nên \(\left|x-2,5\right|+\left|3,5-x\right|\ge0\)
để \(\left|x-2,5\right|+\left|3,5-x\right|=0\) thì \(\hept{\begin{cases}x-2,5=0\\3,5-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2,5\\x=3,5\end{cases}}}\)(vô lí)
vì x không thể xuất hiện 2 lần trong 1 trường hợp vậy x có 0 phần tử thỏa mãn yêu cầu đề bài đã cho.
\(\left|x-2,5\right|\ge0\)
\(\left|3,5-x\right|\ge0\)
\(\Rightarrow\left|x-2,5\right|+\left|3,5-x\right|\ge0\)
Do vậy
\(\hept{\begin{cases}\left|x-2,5\right|=0\\\left|3,5-x\right|=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2,5\\x=3,5\end{cases}}}\)( vô lý )
Vậy có 0 phần tử của tập hợp các số x thỏa mãn đề bài