K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

5 tháng 12 2021

\(a,\dfrac{x^3-2^3}{x^2-4}=\dfrac{\left(x-2\right)\left(x^2-2x+4\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-2x+4}{x+2}\\ b,\dfrac{2}{2x-4}=\dfrac{2}{2\left(x-2\right)}=\dfrac{1}{x-2}\\ \dfrac{3}{3x-6}=\dfrac{3}{3\left(x-2\right)}=\dfrac{1}{x-2}\)

9 tháng 11 2021

\(\dfrac{x+y}{2-x}=\dfrac{-\left(x+y\right)}{x-2}\)

\(\dfrac{-y}{y-4}=\dfrac{--y}{4-y}=\dfrac{y}{4-y}\)

9 tháng 11 2021

mik cam on bn

26 tháng 11 2016

1 a

2c

3b

4d

5c

6c

20 tháng 12 2023

Câu 4:B

Câu 7: A

Câu 8: B

Câu 11: C

21 tháng 11 2018

Ta có \(\frac{2}{x^3-y^3}=\frac{2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(\frac{2x-1}{x^2-y^2}=\frac{2x+1}{\left(x+y\right)\left(x-y\right)}\)

\(\frac{1}{x+y}\)  giữ nguyên

MTC: \(\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)

Các nhân tử phụ tương ứng là : \(\left(x+y\right);\left(x-y\right)\left(x^2+xy+y^2\right);\left(x^2+xy+y^2\right)\)

Ta có:

\(\frac{2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\frac{2.\left(x+y\right)}{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)}\)

\(\frac{1}{x+y}=\frac{1.\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(\frac{2x+1}{\left(x+y\right)\left(x-y\right)}=\frac{\left(2x+1\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)}\)

15 tháng 12 2019

B1 :

a) (2x - 1)2