K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi h là khoảng cách từ M đến mặt phẳng (AB’C)

Khi đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì AC 2 = B ' C 2 = 5 a 2  nên tam giác ACB’ cân tại C. Do đó, đường trung tuyến CI của tam giác ACB’ cũng là đường cao.

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó suy ra

Giải sách bài tập Toán 12 | Giải sbt Toán 12

20 tháng 5 2017

Khối đa diện

Khối đa diện

6 tháng 12 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Thể tích khối chóp M.AB’C bằng thể tích khối chóp B’AMC. Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

6 tháng 6 2019

Đáp án C

21 tháng 6 2016

ta có : 

\(V_{M.AB'C}=V_{B'.MAC}=\frac{B'B.S_{ABC}}{3}\)

Mà BB'=A'A=a

\(S_{AMC}=\frac{CD.AM}{2}=\frac{a.2a}{2.3}=\frac{a^2}{3}\)

=> \(V_{M.AB'C}=\frac{a^3}{9}\) (1)

=> dM,(AB'C)=\(\frac{3.V_{M.AB'C}}{S_{AB'C}}\)  (2)

tam giác AB'C cps \(AB=B'C=2\sqrt{3}\)

và \(AB=a\sqrt{2}\)

=>\(S_{AB'C}=\frac{a^2\sqrt{5}}{2}\)                    (3)

Từ (1), (2)&(3)

=> dM;(AB'C)=\(\frac{2a}{3\sqrt{a}}\)

21 tháng 6 2016

kkk.PNG

Pytago tính đuợc 3 cạnh 

,         \(MC=\frac{a\sqrt{5}}{2}\)

Dùng công thức Heron =>\(S_{AMC}=\frac{3a^2}{4}\)

\(V_{M.AB'C}=V_{B.AB'C}=\frac{a^3}{4}\)

 

Mặt khác dùng công thức Heron cũng tính được \(S_{AB'C}=\frac{3a^2}{2}\)

=> \(d_{\left(M;\left(AB'C\right)\right)}=\frac{3V_{M.AB'C}}{S_{AB'C}}=\frac{a}{2}\)

27 tháng 12 2017

1 tháng 1 2018

22 tháng 4 2017

15 tháng 12 2018

Đáp án D

Do đó 

Tứ diện DACD’ vuông tại D nên ta có:

18 tháng 2 2017