Hình chữ nhật ABCD có AB = 2AD. Gọi P, Q theo thứ tự là trung điểm của AB, CD. Gọi H là giao điểm của AQ và DP, gọi K là giao điểm của CP và BQ. Chứng minh rằng PHQK là hình vuông.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác APQD có
AP//QD
AP=QD
DO đó: APQD là hình bình hành
mà AP=AD
nên APQD là hình thoi
mà \(\widehat{PAD}=90^0\)
nên APQD là hình vuông
=>Hai đường chéo AQ và PD vuông góc với nhau tại trung điểm của mỗi đường và bằng nhau
=>H là trung điểm chung của AQ và PD và AQ vuông góc PD tại H
Xét tứ giác BPQC có
BP//QC
BP=QC
Do đó: BPQC là hình bình hành
mà BP=BC
nên BPQC là hình thoi
=>BQ vuông góc với CP tại trung điểm của mỗi đường
hay K là trung điểm chung của BQ và CP
Xét ΔDPC có
PQ là đường trung tuyến
PQ=CD/2
Do đó: ΔDPC vuông tại P
Xét tứ giác PHQK có
\(\widehat{PHQ}=\widehat{PKQ}=\widehat{HPK}=90^0\)
Do đó: PHQK là hình chữ nhật
mà PH=QH
nên PHQK là hình vuông
a: Xét tứ giác APQD có
AP//QD
AP=QD
Do đó: APQD là hình bình hành
mà AP=AD
nên APQD là hình thoi
mà \(\widehat{PAD}=90^0\)
nên APQD là hình vuông
a: Xét tứ giác APQD có
AP//QD
AP=QD
Do đó: APQD là hình bình hành
mà AP=AD
nên APQD là hình thoi
b: Xét tứ giác PBQD có
PB//QD
PB=QD
Do đó: PBQD là hình bình hành
Suy ra: PD//QB và PD=QB(1)
Xét tứ giác BPQC có
BP//QC
BP=QC
Do đó: BPQC là hình bình hành
mà BP=BC
nên BPQC là hình thoi
=>PC và QB cắt nhau tại trung điểm của mỗi đường
hay K là trung điểm của BQ
=>KQ=BQ/2(2)
Ta có: APQD là hình thoi
nên AQ và PD vuông góc với nhau tại trung điểm của mỗi đường
=>I là trung điểm của PD
=>IP=PD/2(3)
Từ (1), (2) và (3) suy ra IP//QK và IP=QK
hay IPKQ là hình bình hành
mà \(\widehat{PIQ}=90^0\)
nên IPKQ là hình chữ nhật
* Xét tứ giác APQD, ta có: AB // CD (gt) hay AP // QD
AP = 1/2 .AB (gt)
QD = 1/2 CD (gt)
AB= CD (vì ABCD là hình chữ nhật)
Suy ra: AP = QD
Hay tứ giác APQD là hình bình hành.
Lại có: ∠ A = 90 0 (vì tứ giác ABCD là hình chữ nhật)
Suy ra tứ giác APQD là hình chữ nhật.
Mà AD = AP = 1/2 AB
Vậy tứ giác APQD là hình vuông.
⇒ AQ ⊥ PD (t/chất hình vuông) ⇒ ∠ (PHQ) = 90 0 (1)
HP = HQ (t/chất hình vuông)
* Xét tứ giác PBCQ, ta có: AB // CD hay BP //CQ
PB = 1/2 AB (gt)
CQ = 1/2 CD (gt)
AB = CD do ABCD là hình chữ nhật
Suy ra: PB = CQ nên tứ giác PBCQ là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)
Lại có: ∠ B = 90 0 (vì ABCD là hình chữ nhật) suy ra tứ giác PBCQ là hình chữ nhật
PB = BC ( vì cùng bằng AD = 1/2 AB)
Vậy tứ giác PBCQ là hình vuông
⇒ PC ⊥ BQ (t/chất hình vuông) ⇒ ∠ (PKQ) = 90 0 (2)
PD là tia phân giác ∠ (APQ) ( t/chất hình vuông)
PC là tia phân giác ∠ (QPB) (t/chất hình vuông)
Suy ra: PD ⊥ PC (t/chất tia phân giác của hai góc kề bù) ⇒ ∠ (HPK) = 90 0 (3)
Từ (1), (2) và (3) suy ra tứ giác PHQK là hình vuông.