K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2017

17 tháng 2 2022

1.a) 3/4 > 5/10

   b) 35/25 > 16/14

2.a) 7/5 > 5/7

  b) 14/16 < 24/21

HT nha

( bạn t.i.c.k cho mik nha, mik cảm ơn )

12 tháng 4 2023

Tyyyyn

 

8 tháng 5 2015

a)

Ta thấy : 23/41 < 1               , 3/2 > 1 

=> 23/41 < 3/2

b)

 Ta có phân số trung gian là: 15/20

 15/23<15/20<17/20

=>15/23 < 17/20

24 tháng 1 2017

Bài 1: Quy đồng => so sánh => trả về phân số ban đầu

Bài 2: Như bài 1 

14 tháng 10 2021

Bài 1

a) 4/3 < 1/3

b) 2/5 < 3/2

c) 7/2 > 1/4

d) 3/4 < 5/6

Bài 2

a) 6/10 = 3/5 và 4/5 vậy 3/5 < 4/5

b) 3/4 và 6/12 = 1/2 vậy 3/4 > 1/2

23 tháng 6 2017

1) \(A=\left(\sqrt{7-\sqrt{21}+4\sqrt{5}}\right)^2=7-\sqrt{21}+4\sqrt{5}\)

\(B=\left(\sqrt{5}-1\right)^2=6-2\sqrt{5}\)

\(\Rightarrow A-B=1-\sqrt{21}+6\sqrt{5}=\left(1+\sqrt{180}\right)-\sqrt{21}>0\)

\(\Rightarrow A>B\Rightarrow\sqrt{7-\sqrt{21}+4\sqrt{5}}>\sqrt{5}-1\)

2) \(C=\left(\sqrt{5}+\sqrt{10}+1\right)^2=5+10+1+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}\)

\(=26+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}>26+10>35=\left(\sqrt{35}\right)^2\)

Vậy \(\sqrt{5}+\sqrt{10}+1>\sqrt{35}\)

3) \(\left(\frac{15-2\sqrt{10}}{3}\right)^2=\frac{225-60\sqrt{10}+40}{9}=\frac{265-60\sqrt{10}}{9}=\frac{265}{9}-\frac{20\sqrt{10}}{3}< 15\)

Vậy nên \(\frac{15-2\sqrt{10}}{3}< \sqrt{15}\)

5 tháng 9 2019

\(\sqrt[3]{\left(1-\sqrt{3}\right)\left(4-2\sqrt{3}\right)}=\sqrt[3]{\left(1-\sqrt{3}\right)\left(\sqrt{3}-1\right)^2}\)=\(\sqrt[3]{\left(1-\sqrt{3}\right)^3}\)=1-\(\sqrt{3}\)

\(\sqrt[3]{\left(1-\sqrt{5}\right)\left(6-2\sqrt{5}\right)}=\sqrt[3]{\left(1-\sqrt{5}\right)\left(\sqrt{5}-1\right)^2}\)=\(\sqrt[3]{\left(1-\sqrt{5}\right)^3}\)=1-\(\sqrt{5}\)

Ta thấy \(\sqrt{5}>\sqrt{3}\)nên 1-\(\sqrt{3}\)>\(1-\sqrt{5}\)

Vậy \(\sqrt[3]{\left(1-\sqrt{3}\right)\left(4-2\sqrt{3}\right)}\)>\(\sqrt[3]{\left(1-\sqrt{5}\right)\left(6-2\sqrt{5}\right)}\)

16 tháng 8 2015

dễ -2/3>4/-5 lếu đúng hãy chon mình luôn nha

1 tháng 4 2018

b) \(\frac{5}{9}\)và \(\frac{5}{8}\) :Quy đồng mẫu số : \(\frac{5}{9}\) = \(\frac{5.8}{9.8}\) = \(\frac{40}{72}\) ; \(\frac{5}{8}\) = \(\frac{5.9}{8.9}\) = \(\frac{45}{72}\)

Vì \(\frac{40}{72}\) < \(\frac{45}{72}\) nên \(\frac{5}{9}\) < \(\frac{5}{8}\)

c)\(\frac{8}{7}\) và \(\frac{7}{8}\) :Quy đồng mẫu số: \(\frac{8}{7}\) = \(\frac{8.8}{7.8}\) = \(\frac{64}{56}\) ; \(\frac{7}{8}\) = \(\frac{7.7}{8.7}\) =\(\frac{49}{56}\)

Vì \(\frac{64}{56}\) > \(\frac{49}{56}\) nên \(\frac{8}{7}\) > \(\frac{7}{8}\)

bạn an đông à cái câu A của bạn sai một chút.

CHÚC BẠN HỌC TỐT !

1 tháng 4 2018

a)\(\frac{3}{7}\) và\(\frac{2}{8}\) :Quy đồng mẫu số : \(\frac{3}{7}\) = \(\frac{3.8}{7.8}\) = \(\frac{24}{56}\) ; \(\frac{2}{8}\) = \(\frac{2.7}{8.7}\) = \(\frac{14}{56}\)

Vì \(\frac{24}{56}\) > \(\frac{14}{56}\) nên \(\frac{3}{7}\) > \(\frac{2}{8}\)

28 tháng 6 2019

c) Đặt \(A=2^0+2^1+2^2+...+2^{50}\)

\(\Leftrightarrow2A=2^1+2^2+2^3...+2^{51}\)

\(\Leftrightarrow2A-A=2^1+2^2+2^3...+2^{51}\)\(-2^0-2^1-2^2-...-2^{50}\)

\(\Leftrightarrow A=2^{51}-2^0=2^{51}-1< 2^{51}\)

Vậy \(2^0+2^1+2^2+...+2^{50}< 2^{51}\)

28 tháng 6 2019

a)Ta có: \(\hept{\begin{cases}2^{30}=\left(2^3\right)^{10}=8^{10}\\3^{30}=\left(3^3\right)^{10}=27^{10}\\4^{30}=\left(2^2\right)^{30}=2^{60}\end{cases}}\)và \(\hept{\begin{cases}3^{20}=\left(3^2\right)^{10}=9^{10}\\6^{20}=\left(6^2\right)^{10}=36^{10}\\8^{20}=\left(2^3\right)^{20}=2^{60}\end{cases}}\)

Mà \(8^{10}< 9^{10}\)\(27^{10}< 36^{10}\);\(2^{60}=2^{60}\)nên

\(8^{10}+27^{10}+2^{60}< 9^{10}+36^{10}+2^{60}\)

hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)

1 tháng 11 2017

a)Ta có :\(3^{60}=\left(3^3\right)^{20}=27^{20}\)

\(2^{80}=\left(2^4\right)^{20}=16^{20}\)

Mà \(27^{20}>16^{20}\Leftrightarrow3^{60}>2^{80}\)

b)Ta có :\(5^{20}=\left(5^4\right)^5=625^5\)

\(4^{25}=\left(4^5\right)^5=1024^5\)

Mà \(1024^5>625^5\Leftrightarrow5^{20}< 4^{25}\)