Cho hai tam giác ABC cân tại A và A'B'C' cân tại A'. Cho biết tỉ số hai đường cao BH và B'H' bằng tỉ số hai cạnh tương ứng AC và A'C' chứng minh hai tam giác trên đồng dạng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) BE // DC => ∆BEF ∽ ∆CDF
AD // BF => ∆ADE ∽ ∆BFE.
Do đó: ∆ADE ∽ ∆CFD
b) BE = AB - AE = 12 - 8 = 4cm
∆ADE ∽ ∆BFE => \(\dfrac{AE}{BE}=\dfrac{AD}{BF}=\dfrac{DE}{FD}\)
=> \(\dfrac{8}{4}=\dfrac{7}{BF}=\dfrac{10}{EF}\)
=> BF = 3,5 cm.
EF = 5 cm.
Vì mình chưa đc làm CTV nên kh đăng ảnh lên được , bạn thông cảm :
Bạn vào thống kê hỏi đáp mình là có ảnh nhé
Tham khảo thêm : https://lazi.vn/edu/exercise/406693/chung-minh-rang-neu-tam-giac-abc-dong-dang-voi-tam-giac-abc-theo-ti-so-k-thi-ti-so-cua-hai-duong-trung-tuyen-tuong-ung-cua-hai-tam
https://lazi.vn/edu/exercise/406693/chung-minh-rang-neu-tam-giac-abc-dong-dang-voi-tam-giac-abc-theo-ti-so-k-thi-ti-so-cua-hai-duong-trung-tuyen-tuong-ung-cua-hai-tam
Tham Khảo link trên nha bn
a) Xét tam giác BKC và CHB có:
góc B= góc C (tính chất tam giác cân)
góc BKC = góc BHC = 90 độ
=> Tam giác BKC đồng dạng tam giác CHB
=> \(\frac{BK}{CH}=\frac{BC}{BC}=1=k\)
b) Tam giác BHA đồng dạng tam giác CKA (g-g)
=> \(\frac{HA}{AK}=\frac{BA}{AC}=1\)
=> \(\frac{AK}{AB}=\frac{AH}{AC}\)
=> KH//BC (Định lí Ta - lét đảo)
c) Ta có theo hệ quả Ta-let:
\(\frac{AK}{AB}=\frac{KH}{BC}=>\frac{AK}{b}=\frac{KH}{a}=>KH=\frac{a.AK}{b}\)
Ta có: AK2+KC2=b2 (1)
KC2+KB2=a2 => KC2+(b-AK)2=a2 =>KC2-2b.AK+AK2=a2 (2)
Trừ 2 cho 1, ta có: -2b.AK=a2-b2 =>\(AK=\frac{a^2-b^2}{-2b}\)
Từ đó => \(KH=\frac{a\times\frac{a^2-b^2}{-2b}}{b}\)
Giả sử ΔA’B’C’ ΔABC theo tỉ số k
Gọi D, D’ lần lượt là trung điểm BC và B’C’
⇒ ΔA’B’D’ ΔABD theo tỉ số k.
Gọi AD và A’D' lần lượt là hai đường phân giác của ΔABC và ΔA'B'C'.
+) Lại có; AD, A’D’ lần lượt là phân giác của góc A và góc A’ nên:
Gọi AD và A’D' lần lượt là hai đường phân giác của ΔABC và ΔA'B'C'.
+) Lại có; AD, A’D’ lần lượt là phân giác của góc A và góc A’ nên: