Cho hàm số y = 1 3 sin 3 x + m sin x Tìm tất cả các giá trị của m để hàm số đạt cực đại tại điểm x = π/3
A. m > 0
B. m = 0
C. m = 1/2
D. m = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Trường hợp 1: nếu m = 1 => y = 0 => hàm số không có cực trị.
Vậy m = 1 không thỏa mãn.
Trường hợp 2: nếu m ≠ 1
Ta có:
Để hàm số đạt cực đại tại x = 0 thì y’ phải đổi dấu từ (+) sang (-) qua x = 0.
Khi đó 4(m-1) < 0 ⇔ m < 1
Vậy m < 1 thỏa mãn yêu cầu bài toán.
Ta có:
\(y'=x^2-2mx+m^2-4\)
\(y''=2x-2m,\forall x\in R\)
Để hàm số \(y=\dfrac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) đạt cực đại tại x = 3 thì:
\(\left\{{}\begin{matrix}y'\left(3\right)=0\\y''\left(3\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2-6m+5=0\\6-2m< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m=1,m=5\\m>3\end{matrix}\right.\Leftrightarrow m=5\)
=> B.
Tìm tất cả các giá trị nguyên của m để hàm số y=x^8+(m-2)x^5-(m^2-4)x^4+1 đạt cực tiểu tại x=0.
m= 2
nha bạn
bạn muốn tl rõ hơn thì bạn tìm trên google
Đáp án D.
Ta có: y’ = cos 3x + mcos x
Hàm số đạt cực đại tại
m = 2 => y’ = cos 3x + 2cos x => y’’ = -3sin 3x – 2sin x
=>
Vậy, m = 2