K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2017

Ta có  y’= 6x2+2mx-12

Do ∆ ' = m 2 + 72 > 0 ,   ∀ m ∈ ℝ   nên hàm số luôn có hai điểm cực trị x1; x2 với x1; x2 là hai nghiệm của phương trình y’=0 .

 Theo định lí Viet, ta có  x 1 + x 2 = - m 3

Gọi A( x1; y1) và B( x2; y2) là hai điểm cực trị của đồ thị hàm số.

Yêu cầu bài toán

⇔ x 1 = x 2 ⇔ x 1 = - x 2 (do x1 khác x2 )

⇔ x 1 + x 2 = 0 ⇔ - m 3 = 0 ⇔ m = 0

Chọn D.

30 tháng 4 2019

Ta có : y’ = 4x3-4( m+ 1) x= 4x( x2- (m+ 1) ).

Hàm số có  điểm cực trị khi và chỉ khi y’ = 0 có  nghiệm phân biệt hay m+1> 0 suy ra m> - 1. (*)

Khi đó, ta có: 

Do đó  O A = B C ⇔ m = 2 m + 1 ⇔ m 2 - 4 m - 4 = 0 ( ∆ ' = 8 ) ⇔ m = 2 ± 2 2 (thỏa mãn (*)).

Vậy  m = 2 ± 2 2 .

Chọn  A.

29 tháng 5 2017

Chọn A

Ta có:

Hàm số có 3 điểm cực trị khi và chỉ khi :

y ' có 3 nghiệm phân biệt

⇔ m + 1 > 0 ⇔ m > - 1   ( * )

Khi đó, ta có  y ' = 0

(vai trò của B, C trong bài toán là như nhau ) nên ta giả sử

Ta có: O A ( 0 ; m ) ⇒ O A = m ⇒ B C = 2 m + 1

Do đó OA = BC

⇔ m = 2 ± 2 2 ( t h ỏ a   m ã n )   ( * )

Vậy  m = 2 ± 2 2

8 tháng 10 2017

Ta có 

Để hàm số có hai điểm cực trị khi m khác -1

Tọa độ các điểm cực trị A( 1; m3+ 3m-1) và B( m; 3m2)  

Suy ra

 

 

Chọn B.

11 tháng 9 2019

Đáp án A

Ta có  y ' = x 2 − 2 x + m − 1

Đồ thị hàm số có 2 điểm cực trị đều nằm bên trái trục tung khi y ' = 0  có 2 nghiệm phân biệt đều dương

⇔ Δ ' = 1 − m + 1 > 0 S = 2 > 0 P = m − 1 > 0 ⇔ 2 > m > 1

24 tháng 1 2018

Đáp án C

Ta có: y ' = 3 m x 2 − 2 m x + 1.  Khi hai điểm cực trị của đồ thị hàm số có hoành độ x 1 , x 2  là nghiệm của PT y ' = 0.  Hai điểm cực trị nằm về hai phía trục tung ⇔ x 1 . x 2 < 0 ⇔ 2 m + 1 m < 0 ⇔ − 1 2 < m < 0.

23 tháng 4 2016

a) Xét hàm số \(y=ax^4+bx^2+c\)

Ta có \(y'=4ax^3+2bx=2x\left(2ax^2+b\right)\)

         \(y'=0\Leftrightarrow x=0\) hoặc \(2ax^2+b=0\left(1\right)\)

Đồ thị  hàm số có 3 cực trị phân biệt khi và chỉ khi \(y'=0\) có 3 nghiệm phân biệt hay phương trình (1) có 2 nghiệm phân biệt khác 0 \(\Leftrightarrow ab< 0\) (*)

Với điều kiện (*) thì đồ  thị có 3 điểm cực trị là :

\(A\left(0;c\right);B\left(-\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right);C\left(\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right)\)

Ta có \(AB=AC=\sqrt{\frac{b^2-8ab}{16a^2}};BC=\sqrt{-\frac{2b}{a}}\) nên tam giác ABC vuông khi và chỉ khi vuông tại A.

Khi đó \(BC^2=2AB^2\Leftrightarrow b^3+8a=0\)

Do đó yêu cầu bài toán\(\Leftrightarrow\begin{cases}ab< 0\\b^3+8a=0\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\-8\left(m+1\right)^3+8=0\end{cases}\)\(\Leftrightarrow m=0\)

 

b) Ta có yêu cầu bài toán  \(\Leftrightarrow\begin{cases}ab< 0\\OA=BC\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\m^2-4\left(m+1\right)=0\end{cases}\)

                                                           \(\Leftrightarrow m=2\pm2\sqrt{2}\)

10 tháng 3 2017

19 tháng 7 2018

Ta có 

Đề đồ thị hàm số có hai điểm cực trị khi m khác 0.

Khi đó tọa độ hai điểm cực trị là A( 0 ; 4m2- 2)  B( 2m; 4m2- 4m3-2).

Do I( 1; 0)  là trung điểm của AB  nên

Chọn C.

7 tháng 12 2021

a) H/s là bậc nhất ⇔ m+5≠0 ⇔m ≠-5

b)  H/s đồng biến ⇔ m+5> 0 ⇔ m> -5

c)  H/s đi qua A( 2,3)    ⇔  2=(m+5).2 +2m -10    ⇔ 2m+ 2m +10 -10 =2

                                     ⇔ m= \(\dfrac{1}{2}\)

d) H/s cắt trục tung tại điểm có tung độ bằng 9

⇔ x=0 thì y=9       ⇔ (m+5).0 +2m -10 =9

                             ⇔m= \(\dfrac{19}{2}\)

e) H/s đi qua điểm 10 trên trục hoành ⇔ y=0, x=10 

⇔ 0= (m+5).10 +2m -10      ⇔m= \(\dfrac{-40}{12}\)

f) h/s song song với y=2x-1 

⇔ \(\left\{{}\begin{matrix}m+5=2\\2m-10\ne-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}m=-3\\m\ne\dfrac{9}{2}\end{matrix}\right.\)

⇔m=-3

7 tháng 12 2021

thank you

haha