K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2018

+ Hàm số xác định và liên tục với mọi x> 0.

Ta có  y ' = 3 x 2 + m + 1 x 6 ,   ∀ x ∈ 0 ;   + ∞

+  Hàm số đồng biến trên khoảng (0; +∞)  khi và chỉ khi  y ' = 3 x 2 + m + 1 x 6 ≥ 0   với mọi x> 0.

⇔ m ≥ - 3 x 2 - 1 x 6 = g ( x ) ,   ∀ x ∈ ( 0 ; + ∞ ) ⇔ m ≥ m a x x ∈ ( 0 ; + ∞ ) g ( x ) . g ' ( x ) = - 6 x + 6 x 7 = - 6 x 8 + 6 x 7 = 0 ⇔ x = 1

Bảng biến thiên

Suy ra maxg( x) = g(1) = -4 và do đó để hàm số đã cho đồng biến t với x> 0 thì m≥ -4

 Mà m nguyên âm nên m ∈ - 4 ; - 3 ; - 2 ; - 1 .

Chọn A.

 

28 tháng 2 2023

28 tháng 2 2023

Số 0 là số nguyên ạ?

NV
29 tháng 7 2021

3.

\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)

Hàm nghịch biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)

\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)

4.

\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)

\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)

25 tháng 11 2019

Đáp án B

10 tháng 12 2018

NV
5 tháng 8 2021

\(y'=3x^2+\dfrac{1}{x^6}+m\)

Hàm đồng biến trên \(\left(0;+\infty\right)\Leftrightarrow y'\ge0;\forall x>0\)

\(\Leftrightarrow3x^2+\dfrac{1}{x^6}+m\ge0\)

\(\Leftrightarrow-m\le3x^2+\dfrac{1}{x^6}\)

\(\Leftrightarrow-m\le\min\limits_{x>0}\left(3x^2+\dfrac{1}{x^6}\right)\)

Ta có:

\(3x^2+\dfrac{1}{x^6}=x^2+x^2+x^2+\dfrac{1}{x^6}\ge4\sqrt[4]{\dfrac{x^6}{6}}=4\)

\(\Rightarrow-m\le4\Rightarrow m\ge-4\)

\(\Rightarrow m=\left\{-4;-3;-2;-1\right\}\)

NV
14 tháng 1 2021

\(y'=3x^2+m+\dfrac{1}{x^6}\ge0\) ; \(\forall x>0\)

\(\Leftrightarrow3x^2+\dfrac{1}{x^6}\ge-m\)

\(\Leftrightarrow-m\le\min\limits_{x>0}\left(3x^2+\dfrac{1}{x^6}\right)\)

Ta có: \(3x^2+\dfrac{1}{x^6}=x^2+x^2+x^2+\dfrac{1}{x^6}\ge4\sqrt[4]{\dfrac{x^6}{x^6}}=4\)

\(\Rightarrow-m\le4\Rightarrow m\ge-4\)

14 tháng 9 2017

Đáp án đúng : B

Câu 1: 

a) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(3m+5< 0\)

\(\Leftrightarrow3m< -5\)

hay \(m< -\dfrac{5}{3}\)

Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(m< -\dfrac{5}{3}\)

b) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì

3m+5>0

\(\Leftrightarrow3m>-5\)

hay \(m>-\dfrac{5}{3}\)

Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì \(m>-\dfrac{5}{3}\)

NV
23 tháng 2 2021

2.

Để hàm nghịch biến với x>0 \(\Leftrightarrow\sqrt{3k+4}-3< 0\)

\(\Leftrightarrow\sqrt{3k+4}< 3\Leftrightarrow3k+4< 9\)

\(\Rightarrow-\dfrac{4}{3}\le k< \dfrac{5}{3}\)

Để hàm đồng biến khi x>0

\(\Leftrightarrow\sqrt{3k+4}-3>0\Leftrightarrow\sqrt{3k+4}>3\)

\(\Leftrightarrow3k+4>9\Rightarrow k>\dfrac{5}{3}\)