Cho hai số thực a,b thỏa mãn a>0, 0<b<a. Tìm giá trị nhỏ nhất của biểu thức P = ( 2 b ) a 2 a − b a 2 + 2 a + 2 b a 2 b a
A. P min = 9 4 .
B. P min = 7 4 .
C. P min = 13 4 .
D. P min = 4 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a< \sqrt{ab}\)
\(\Leftrightarrow a^2< ab\)
\(\Leftrightarrow a^2-ab< 0\)
\(\Leftrightarrow a\left(a-b\right)< 0\) (đúng) (1)
\(\sqrt{ab}< \dfrac{a+b}{2}\) (áp dụng BĐT AM-GM). (2)
\(\dfrac{a+b}{2}< b\)
\(\Leftrightarrow\dfrac{a}{2}-\dfrac{b}{2}< 0\)
\(\Leftrightarrow\dfrac{a-b}{2}< 0\) (đúng) (3)
-Từ (1), (2), (3) ta suy ra đpcm.
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
b: (3x-2)^5+(5-x)^5+(-2x-3)^5=0
Đặt a=3x-2; b=-2x-3
Pt sẽ trở thành:
a^5+b^5-(a+b)^5=0
=>a^5+b^5-(a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5)=0
=>-5a^4b-10a^3b^2-10a^2b^3-5ab^4=0
=>-5a^4b-5ab^4-10a^3b^2-10a^2b^3=0
=>-5ab(a^3+b^3)-10a^2b^2(a+b)=0
=>-5ab(a+b)(a^2-ab+b^2)-10a^2b^2(a+b)=0
=>-5ab(a+b)(a^2-ab+b^2+2ab)=0
=>-5ab(a+b)(a^2+b^2+ab)=0
=>ab(a+b)=0
=>(3x-2)(-2x-3)(5-x)=0
=>\(x\in\left\{\dfrac{2}{3};-\dfrac{3}{2};5\right\}\)
Lời giải:
$a^4-4a=b^4-4b$
$\Leftrightarrow (a^4-b^4)-(4a-4b)=0$
$\Leftrightarrow (a-b)(a+b)(a^2+b^2)-4(a-b)=0$
$\Leftrightarrow (a-b)[(a+b)(a^2+b^2)-4]=0$
$\Rightarrow (a+b)(a^2+b^2)-4=0$ (do $a-b\neq 0$ với mọi $a,b$ phân biệt)
$\Rightarrow (a+b)(a^2+b^2)=4>0$
Mà $a^2+b^2>0$ với mọi $a,b$ phân biệt nên $a+b>0$
Mặt khác:
Áp dụng BĐT AM-GM:
$4=(a+b)(a^2+b^2)\geq (a+b).\frac{(a+b)^2}{2}$
$\Rightarrow 8> (a+b)^3$
$\Rightarrow 2> a+b$
Vậy $0< a+b< 2$
Ta có đpcm.