CM : a3+5a chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^3 = 3^3
5a = 5 . 3
ta có : 9 + 15 = 24
vậy 24 chia hết cho 6
A=a3+5a=(a3-a)+6a=a(a-1)(a+1)+6a
Vì a(a-1)(a+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6 và 6a chia hết cho 6
=> A chia hết cho 6.
\(a^3+5a=a\left(a^2+5\right)=a\left[\left(a^2-1\right)+6\right]=a\left(a-1\right)\left(a+1\right)+6a\)
Dễ thấy a(a-1)(a+1) chia hết cho 6 vì là tích của ba số nguyên liên tiếp. Lại có 6a luôn chia hết cho 6
=> đpcm
a3 + 5a = a.a.a + 5a = a (a + 1) (a + 2) (a + 3)
Ta có a (a + 1) (a + 2) (a + 3) là tích 4 số tự nhiên liên tiếp => chia hết cho 2 và 3
Vì chia hết cho 2 và 3 mà ƯCLN (2;3) = 1 là hai số nguyên tố cùng nhau nên chia hết cho 2.3 = 6
Vậy...
Ta có : a^3 + 5a = a^3 - a + 6a
= a(a^2-1^2) + 6a
=a(a-1)(a+1) + 6a
Bạn lần lượt chứng minh a(a-1)(a+1) chia hết cho cả 2 và 3 theo cách gọi a có dạng 2k và 3k , rồi suy ra a (a-1)(a+1) chia hết cho 2.3 = 6 ( vì ( 2;3 ) =1)
mà 6a chia hết cho 6
Do đó , a(a-1)(a+1) + 6a hay a^3 + 5a chia hết cho 6 .
Lời giải:
$a^3+b^3=2(c^3-8d^3)$
$a^3+b^3+c^3+d^3=c^3+d^3+2(c^3-8d^3)$
$=3c^3-15d^3=3(c^3-5d^3)\vdots 3$
Khi đó:
$(a+b+c+d)^3=(a+b)^3+(c+d)^3+3(a+b)(c+d)(a+b+c+d)$
$=a^3+b^3+c^3+d^3+3ab(a+b)+3cd(c+d)+3(a+b)(c+d)(a+b+c+d)\vdots 3$ do:
$a^3+b^3+c^3+d^3\vdots 3$
$3ab(a+b)\vdots 3$
$3cd(c+d)\vdots 3$
$3(a+b)(c+d)(a+b+c+d)\vdots 3$
Vậy:
$(a+b+c+d)^3\vdots 3$
$\Rightarrow a+b+c+d\vdots 3$
a, n(n+1)(n+2)
nhận xét :
n; n+1; n+2 là 3 số tự nhiên liên tiếp
=> có 1 số chia hết cho 2 và có 1 số chia hết cho 3 (1)
ƯCLN(2;3) = 1 (2)
(1)(2) => n(n+1)(n+2) \(⋮\) 6
b, 3a + 5b \(⋮\) 8
=> 5(3a + 5b) \(⋮\) 8
=> 15a + 25b \(⋮\) 8
3(5a + 3b) = 15a + 9b
xét hiệu :
(15a + 25b) - (15a + 9b)
= 15a + 25b - 15a - 9b
= (15a - 15a) + (25b - 9b)
= 0 + 16b
= 16b và (3;5) = 1
=> 5a + 3b \(⋮\) 8
c, làm tương tự câu b
Vì a-b chia hết cho 6
nên (a-bchia hết cho 6
=>> a+5a chia hết cho 6
Vì a-b chia hết cho 6 nên 5(a-b)=5a-5b chia hết cho 6.
Mà 6b chia hết cho 6 với mọi số nguyên b.
Do vậy 5a-5b-6b chia hết cho 6 => 5a - 11b chia hết cho 6 (đpcm).