K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2016

thế kết quả ra bao nhiêu ?

26 tháng 2 2017

kết quả của mk bằng -2;-1;0;1.

31 tháng 10 2016

\(M=\left|x-\frac{5}{4}\right|+\left|x+2\right|=\left|\frac{5}{4}-x\right|+\left|x+2\right|\)

Áp dụng bđt \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)với  \(xy\ge0\) ta có: 

\(M=\left|\frac{5}{4}-x\right|+\left|x+2\right|\ge\left|\frac{5}{4}-x+x+2\right|=\left|\frac{13}{4}\right|=\frac{13}{4}\)với \(\left(\frac{5}{4}-x\right)\left(x+2\right)\ge0\)

Lập bảng xét dấu:

x                           -2                                 5/4                    
5/4-x             +             |                  +               0                -
x+2             -              0                 +                |                +
(5/4-x)(x+2)             -              0                 +                0               -

Nhìn bảng xét dấu dễ thấy \(-2\le x\le\frac{5}{4}=1,25\) thỏa mãn\(\left(\frac{5}{4}-x\right)\left(x+2\right)\ge0\)

Vì x nguyên => \(x\in\left\{-1;0;1\right\}\)

Vậy Mmin=13/4 khi  \(x\in\left\{-1;0;1\right\}\)

23 tháng 5 2017

mình làm sai rồi nhé bạn

là dấu "=" xảy ra khi xy>=0

thật sự xin lỗi

21 tháng 12 2016

a)Ta thấy: \(\left|x-5\right|\ge0\Rightarrow A\ge0\)

Dấu "=" xảy ra khi \(x=5\)

Vậy \(Min_A=0\) khi \(x=5\)

b)Ta thấy: \(\left|5+x\right|\ge0\Rightarrow B\ge0\)

Dấu "=" xảy ra khi \(x=-5\)

Vậy \(Min_B=0\) khi \(x=-5\)

c)Ta thấy: \(\left|-x+2\right|\ge0\Rightarrow C\ge0\)

Dấu "=" xảy ra khi \(x=2\)

Vậy \(Min_C=0\) khi \(x=2\)

d)Ta thấy: \(\left|x+1\right|\ge0\Rightarrow D\ge0\)

Dấu "=" xảy ra khi \(x=-1\)

Vậy \(Min_D=0\) khi \(x=-1\)

 

   
21 tháng 12 2016

Mina,b,c,dla gi zay?

 

AH
Akai Haruma
Giáo viên
15 tháng 9

Lời giải:

Nếu $x>1$ thì:

$A=x+2+x-1=2x+1> 2.1+1=3$

Nếu $-2\leq x\leq 1$ thì:

$A=x+2+1-x=3$

Nếu $x< -2$ thì:

$A=-(x+2)+1-x=-1-2x> -1-2(-2)=3$

Từ 3 TH trên suy ra $A_{\min}=3$ khi $-2\leq x\leq 1$

Mà $x$ nguyên nên $x\in \left\{-2; -1; 0; 1\right\}$ (đây chính là tập hợp các số nguyên $x$ thỏa mãn đề)

3 tháng 6 2015

1) Vì l 1/2-x l \(\ge0\) nên A đạt giá trị nhỏ nhất khi l 1/2-x l = 0

=> 1/2 -x =0 => x=1/2

2) Để B lớn nhất thì l 2x+2/3 l nhỏ nhất 

=> l 2x + 2/3 l = 0

=> 2x + 2/3 = 0

=> 2x = -2/3

=> x = -1/3

 

3 tháng 6 2015

1) ta có I 1/2 -xI\(\ge\)0

=>A=0,6+I 1/2 -xI\(\ge\)0,6

Dấu = xảy ra khi 1/2-x=0

                               x=1/2

Vậy GTNN của A là 0,6 tại x=1/2

2) ta có I2x+2/3I\(\ge\)0

=>-I2x+2/3I\(\le\)

=>B=2/3-I2x+2/3I\(\le\)2/3

Dấu = xảy ra khi 2x+2/3=0

                           2x     =-2/3

                             x    =-2/3:2

                             x    =-1/3

Vậy GTLN của B là 2/3 tại x=-1/3

 

23 tháng 7 2015

Gọi tập hợp các số cần tìm là B.

B={0;1;2}