Cho tong gom 2014 so hang:
S=1/4+2/4²+3/4³+......+2014/4²ⁿ¹⁴
Chung minh:S<1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+....+\frac{2014}{4^{2014}}\)
\(4S=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\)
\(4S-S=\left(1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\right)-\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2014}{4^{2014}}\right)\)
\(3S=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)
\(12S=4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}-\frac{2014}{4^{2013}}\)
\(12S-3S=\left(4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}-\frac{2014}{4^{2013}}\right)-\left(1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\right)\)
\(9S=4-\frac{2014}{4^{2013}}-\frac{1}{4^{2013}}+\frac{2014}{4^{2014}}\)
\(9S=4-\frac{4028}{4^{2014}}-\frac{4}{4^{2014}}+\frac{2014}{4^{2014}}\)
\(9S=4-\frac{2010}{4^{2014}}< 4\)
\(\Rightarrow9S< 4\)
\(\Rightarrow S< \frac{4}{9}< 1\)(đpcm)
Ta có :
\(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2014}{4^{2014}}\)( 1 )
\(4S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2014}{4^{2013}}\)( 2 )
Lấy ( 2 ) - ( 1 ) ta được :
\(3S=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)
gọi \(B=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}\)( 3 )
\(4B=4+1+\frac{1}{4}+...+\frac{1}{4^{2012}}\) ( 4 )
Lấy ( 4 ) - ( 3 ) ta được :
\(3B=4-\frac{1}{4^{2013}}\)
\(\Rightarrow B=\frac{4-\frac{1}{4^{2013}}}{3}=\frac{4}{3}-\frac{1}{4^{2013}.3}\)
\(\Rightarrow3S=\frac{4}{3}-\frac{1}{4^{2013}.3}-\frac{2014}{4^{2014}}\)
\(\Rightarrow S=\frac{\frac{4}{3}-\frac{1}{4^{2013}.3}-\frac{2014}{4^{2014}}}{3}=\frac{4}{9}-\frac{1}{4^{2013}.9}-\frac{2014}{4^{2014}.3}< \frac{4}{9}< 1\)
vậy \(S< 1\)
=> \(4.S=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\)
=> 4.S - S = \(\left(1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\right)-\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2014}{4^{2014}}\right)\)
=> 3.S = \(=1+\left(\frac{2}{4}-\frac{1}{4}\right)+\left(\frac{3}{4^2}-\frac{2}{4^2}\right)+\left(\frac{4}{4^3}-\frac{3}{4^3}\right)+...+\left(\frac{2014}{4^{2013}}-\frac{2013}{4^{2013}}\right)-\frac{2014}{4^{2014}}\)
=> 3.S = \(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)
Tính A= \(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}\)
=> \(4.A=4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}\)
=> 4.A - A = \(4-\frac{1}{4^{2013}}\)=> A= \(\frac{4}{3}-\frac{1}{3.4^{2013}}\)
=> 3.S = \(\frac{4}{3}-\frac{1}{3.4^{2013}}-\frac{2014}{4^{2014}}\) => S = \(\frac{4}{9}-\frac{1}{9.4^{2013}}-\frac{2014}{4^{2014}}<\frac{4}{9}<1\)=> S < 1 => đpcm
1/3^2-1/3^4=3^2/3^4-1/3^4=8/3^4
1/3^6-1/3^8=1./3^4.8/3^4=8/3^8
1/3^2014-1/3^2016=8/3^2004
A/8=1/3^4+1/3^8+...+..1/3^2004
A/(8.3^4)=1/3^8+1/3^12+..+1/3^2008
A(1/8-1/(8.3^4)=1/3^4-1/3^2008=(3^2004-1)/3^2008
10.A(1/3^4)=...
10A=(3^2004-1)/3^2004<1
vậy A<1/10=0,1
^ là dấu phân số nhé
cho A=1^1.2+1^2.3+...+1^2014.2015
1^1.2>1^4; 1^2.3>2^42; 1^3.4>3^43;...;1^2014.2015>2014^42014
mà A=1^1.2+1^2.3+...+1^2104.2015=1-1^2+1^2-1^3+1^3+...+1^2014-1^2015
A=1-1^2015=2014^2015
mà 2014^2015>1^2>S nên 1^2>S
=>4.S=1+2/4 +3/42+....+2014/42013
=>3.S=1+1/4+1/42+...+1/42013-2014/42014
=>12.S=4+1+1/4+......+1/42012-2014/42013
=>9.S=4-2014/42013-1/42013+2014/42014
=>9.S=4-(2015/42013-2014/42014) mà 2015/42013-2014/42014>0
=>9.S<4
=>S<4/9
=S<4/8
=>S<1/2
=>S<0,5
Vậy S<0,5 (ĐPCM)