Tính cạnh huyền của một tam giác biết tỉ số các cạnh góc vuông 3:4 và chu vi tam giác bằng 36 cm
A. 9 cm
B. 12 cm
C. 15 cm
D. 16 cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài hai cạnh góc vuông của tam giác lần lượt là a và b. Gọi c là độ dài cạnh huyền (a, b, c > 0)
Đáp án B
Gọi hai cạnh góc vuông là a, b; cạnh huyền là c;
Dựa vào tính chất Pi-ta-go, tỉ số của cạnh huyền là: \(\sqrt{3^2}+4^2=\sqrt{9}+16=5\);
Dựa vào tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3;\)
Vì a/3 = 3 => a = 3*3 = 9;
b/4 = 3 => b = 4*3 = 12;
c/5 = 3 => c = 5*3 = 15;
Đặt cạnh huyền của tam giác là x (\(x > 8\))
Theo giải thiết ta tính được cạnh góc vuông là \(x - 8\)
Áp dụng định lý Pitago ta tính được cạnh góc vuông còn lại là \(\sqrt {{x^2} - {{\left( {x - 8} \right)}^2}} = \sqrt {16x - 64} \)
Ta có chu vi của tam giác là \(x + \left( {x - 8} \right) + \sqrt {16x - 64} = 30\)
\(\begin{array}{l} \Leftrightarrow \sqrt {16x - 64} = 38 - 2x\\ \Rightarrow 16x - 64 = {\left( {38 - 2x} \right)^2}\\ \Rightarrow 16x - 64 = 1444 - 152x + 4{x^2}\\ \Rightarrow 4{x^2} - 168x + 1508 = 0\end{array}\)
\( \Rightarrow x = 13\) và \(x = 29\)
Thay \(x = 13\) và \(x = 29\) vào phương trình \(\sqrt {16x - 64} = 38 - 2x\) ta thấy chỉ có \(x = 13\) thảo mãn phương trình
Vậy cạnh huyền có độ dài là 13 cm.
Câu đầu:
\(Chu.vi.HV=Chu.vi.hình.tam.giác=\dfrac{7}{12}\left(cm\right)\\ Cạnh.hình.tam.giác:\dfrac{7}{12}:3=\dfrac{7}{36}\left(cm\right)\)
Câu dưới:
Tổng thể tích nước siro dâu và nước lọc:
\(\dfrac{1}{2}+\dfrac{7}{4}=\dfrac{9}{4}\left(lít\right)\)
Số lượng cốc nước dâu rót được là:
\(\dfrac{9}{4}:\dfrac{1}{8}=18\left(cốc\right)\\ Đáp.số:18.cốc\)
Chọn A
4:
a: Gọi độ dài cạnh góc vuông cần tìm là x
Theo đề, ta có: x^2+x^2=a^2
=>2x^2=a^2
=>x^2=a^2/2=2a^2/4
=>\(x=\dfrac{a\sqrt{2}}{2}\)
b:
Độ dài cạnh là;
\(h:\dfrac{\sqrt{3}}{2}=\dfrac{2h}{\sqrt{3}}\)
5:
ΔAHB vuông tại H
=>AH^2+HB^2=AB^2
=>13^2=12^2+HB^2
=>HB=5cm
BC=5+16=21cm
ΔAHC vuông tại H
=>AH^2+HC^2=AC^2
=>AC^2=16^2+12^2=400
=>AC=20(cm)