Cho hàm số y = 3 x 2 + 1 . So sánh f ( x ) ; f ( − x )
A. f ( x ) > f ( − x )
B. f ( x ) < f ( − x )
C. f ( x ) = f ( − x )
D. f ( x ) ≠ f ( − x )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(-3/2) = 1 - 2.(-3/2) = 1 - -3 = 4
f(3/2) = 1 - 2.(3/2) = 1 - 3 = -2
=> f(-3/2) > f(3/2)
\(y=f\left(x\right)=\left(\sqrt{3}+1\right)x-5\)
Vì \(\sqrt{3}+1>0\) nên hs đồng biến trên R
Mà \(2+\sqrt{3}< 3+\sqrt{3}\)
Vậy \(f\left(2+\sqrt{3}\right)< f\left(3+\sqrt{3}\right)\)
a)
\(f\left( { - 2} \right) = {\left( { - 2} \right)^2} = 4;\)\(f\left( { - 1} \right) = {\left( { - 1} \right)^2} = 1\)
\( \Rightarrow f\left( { - 2} \right) > f\left( { - 1} \right)\)
Lấy \({x_1},{x_2} \in \left( { - 2; - 1} \right)\) sao cho \({x_1} < {x_2}\).
\( \Rightarrow {x_1} - {x_2} < 0\)
\({x_1},{x_2} < 0 \Rightarrow {x_1} + {x_2} < 0\)
Ta có:
\(\begin{array}{l}f\left( {{x_1}} \right) = x_1^2;f\left( {{x_2}} \right) = x_2^2\\f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = x_1^2 - x_2^2\\ = \left( {{x_1} - {x_2}} \right).\left( {{x_1} + {x_2}} \right) > 0\\ \Rightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\end{array}\)
=> Hàm số nghịch biến trên (-2;-1)
Vậy hàm số giảm khi x tăng từ -2 đến -1
b)
\(\begin{array}{l}f\left( 1 \right) = 1;f\left( 2 \right) = {2^2} = 4\\ \Rightarrow f\left( 1 \right) < f\left( 2 \right)\end{array}\)
Lấy \({x_1},{x_2} \in \left( {1;2} \right)\) sao cho \({x_1} < {x_2}\).
\( \Rightarrow {x_1} - {x_2} < 0\)
\({x_1},{x_2} > 0 \Rightarrow {x_1} + {x_2} > 0\)
Ta có:
\(\begin{array}{l}f\left( {{x_1}} \right) = x_1^2;f\left( {{x_2}} \right) = x_2^2\\f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = x_1^2 - x_2^2\\ = \left( {{x_1} - {x_2}} \right).\left( {{x_1} + {x_2}} \right) < 0\\ \Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\end{array}\)
=> Hàm số đồng biến trên (1;2)
Vậy hàm số tăng khi x tăng từ 1 đến 2.
1.\(f\left(x\right)=0\)
\(=>\left|3x-1\right|=0\)
\(=>3x-1=0\)
\(=>3x=1\)
\(=>x=\frac{1}{3}\)
\(f\left(x\right)=1\)
\(=>\left|3x-1\right|=1\)
\(=>\orbr{\begin{cases}3x-1=-1\\3x-1=1\end{cases}}\)
\(=>\orbr{\begin{cases}3x=-1+1=0\\3x=1+1=2\end{cases}}\)
\(=>\orbr{\begin{cases}x=0\\x=\frac{2}{3}\end{cases}}\)
Vậy ...
Ta có hàm số : \(y=f\left(x\right)=ax-3\)
\(f\left(3\right)=9\)
\(=>ax-3=9\)
\(=>3a-3=9\)
\(=>3a=9+3=12\)
\(=>a=4\)
\(f\left(5\right)=11\)
\(=>ax-3=11\)
\(=>5a-3=11\)
\(=>5a=11+3=14\)
\(=>a=\frac{14}{5}\)
\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{-x_1+1+x_2-1}{x_1-x_2}=-1\)
Vậy: f(x) nghịch biến trên R