K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2017

a: \(AC=\sqrt{12^2+14^2}=2\sqrt{85}\left(cm\right)\)

\(BH=\dfrac{BA\cdot BC}{AC}=\dfrac{12\cdot14}{2\sqrt{85}}=\dfrac{84\sqrt{85}}{85}\left(cm\right)\)

b: Xét ΔABC có BD là đường phân giác

nên AD/AB=CD/BC

=>AD/12=CD/14

=>AD/6=CD/7

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{7}=\dfrac{AD+CD}{6+7}=\dfrac{2\sqrt{85}}{13}\)

Do đó: \(AD=\dfrac{12\sqrt{85}}{13}\left(cm\right);CD=\dfrac{14\sqrt{85}}{13}\left(cm\right)\)

a: BC=căn 6^2+8^2=10cm

Xét ΔABC vuông tại A có sin C=AB/BC=3/5

nên góc C=37 độ

=>góc B=53 độ

b: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/3=DC/4=(DB+DC)/(3+4)=10/7

=>DB=30/7cm; DC=40/7cm

c: Xét tứ giác AEDF có

góc AED=góc AFD=góc FAE=90 độ

AD là phân giác của góc EAF

=>AEDF là hình vuông

Câu 27: Cho tam giác ABC có M, N, P lần lượt là trung điểm của AB, AC, BC; biết chu vị tam giác ABC = 30cm thì chu vi tam giác MNP bằng A. 60cm B. 15cm C.10 cm D.20cm Câu 28: Cho hình thang cân ABCD (AB//CD) biết góc D= 105° thì góc A bằng A. 850 B. 750 C. 650 D.50 độ Câu 29: Cho hình thang ABCD có AB//CD; M, N lần lượt là trung điểm của AD, BC; MN = 21cm thì AB+ CD bằng: A.18cm B. 10,5cm C.21cm D.42cm Câu 30:Cho hình thang cân ABCD...
Đọc tiếp

Câu 27: Cho tam giác ABC có M, N, P lần lượt là trung điểm của AB, AC, BC; biết chu vị tam giác ABC = 30cm thì chu vi tam giác MNP bằng A. 60cm B. 15cm C.10 cm D.20cm Câu 28: Cho hình thang cân ABCD (AB//CD) biết góc D= 105° thì góc A bằng A. 850 B. 750 C. 650 D.50 độ Câu 29: Cho hình thang ABCD có AB//CD; M, N lần lượt là trung điểm của AD, BC; MN = 21cm thì AB+ CD bằng: A.18cm B. 10,5cm C.21cm D.42cm Câu 30:Cho hình thang cân ABCD (AB//CD); biết AB//CD; AB= 34cm; CD = 10cm; vẽ AH; BK cùng vuông góc CD thì DH bằng: A. 7cm B.10cm C.12cm D.16cm Câu 31:Hình nào sau đây không có tâm đối xứng: A. Hình chữ nhật B. Hình thoi C. Hình thang Câu 32: Hình nào sau đây có 3 trục đối xứng A. Hình chữ nhật B.Hình thoi C.Tam giác đều D. Hình bình hanh Câu 33:Hình nào sau đây có 4 trục đối xứng A. Hình chữ nhật B.Hình thoi C. Hình thang cân d.Hình vuông Câu 34: Cho hình bình hành MNPQ có A; B lần lượt là trung điểm của MN; PQ khi đó ta có số các hình bình hành tạo bởi từ 4 trong 6 điểm đã cho trong hình vẽ có cùng tâm đối xứng là: A.5 B. 3 C. 7 D. 9 Câu 35: Cho tứ giác ABCD có M; N; P, Q lần lượt là trung điểm của AB, BC, CD, DA khi đó tứ giác MNPQ là: A. Hình bình hành B. Hình chữ nhật C. Hình thang. D. Hình vuông Câu 36: Cho hình chữ nhật ABCD có M; N; P, Q lần lượt là trung điểm của AB, BC; - Tải lại đề khi đó tứ giác MNPQ là: . A. Hình bình hành B. Hình chữ nhật C. Hình thoi. D. Hình vuông Câu 37: Cho hình thoi ABCD có M; N; P, Q lần lượt là trung điểm của AB, BC, CD; DA khi đó tứ giác MNPQ là: A. Hình bình hành B. Hình chữ nhật C. Hình thoi. D. Hình vuông Câu 38: Cho tam giác ABCvuông ở A có AB= 5cm, AC = 12cm thì diện tích tam giác ABC là: A 60 cm? B.30 cm C. 30 cm D. Một đáp án khác Câu 39: Cho hình chữ nhật ABCD có AB = 8cm, AC = 10cm thì diện tích của hình chữ nhật là: A.80cm? B. 60cm C. 40cm? D.48cm? Câu 40: Cho tam giác ABC vuông cân ở A có M; N; P lần lượt là trung điểm của AB, AC; BC khi đó tứ giác AMPN là A. Hình bình hành B. Hình chữ nhật C. Hình thoi. D. Hình vuông giúp e với ạ tối em thi rồi ạ🤧

1
30 tháng 12 2021

Câu 27: B

Câu 28: C

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{15}=\dfrac{4}{5}\)

nên \(\widehat{B}\simeq53^0\)

Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)(Hai góc nhọn phụ nhau)

hay \(\widehat{C}=37^0\)

b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{BD}{9}=\dfrac{CD}{12}\)
mà BD+CD=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{9}=\dfrac{CD}{12}=\dfrac{BD+CD}{9+12}=\dfrac{15}{21}=\dfrac{5}{7}\)

Do đó:

\(\left\{{}\begin{matrix}BD=\dfrac{45}{7}\left(cm\right)\\CD=\dfrac{60}{7}\left(cm\right)\end{matrix}\right.\)

c) Xét tứ giác AFDE có 

\(\widehat{AFD}=90^0\)

\(\widehat{AED}=90^0\)

\(\widehat{FAE}=90^0\)

Do đó: AFDE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Hình chữ nhật AFDE có AD là tia phân giác của \(\widehat{FAE}\)(gt)

nên AFDE là hình vuông(Dấu hiệu nhận biết hình vuông)

Sửa đề: cắt AB tại D.

a) Sửa đề: ΔACD=ΔECD

Xét ΔACD vuông tại A và ΔECD vuông tại E có

CD chung

\(\widehat{ACD}=\widehat{ECD}\)(CD là tia phân giác của \(\widehat{ACE}\))

Do đó: ΔACD=ΔECD(Cạnh huyền-góc nhọn)

b) Ta có: ΔACD=ΔECD(cmt)

nên DA=DE(Hai cạnh tương ứng)

Xét ΔDAE có DA=DE(cmt)

nên ΔDAE cân tại D(Định nghĩa tam giác cân)

 

22 tháng 9 2017

Tương tự, HS tự làm

1 tháng 7 2022

a)Áp dụng HTL2 vào tam giác ABC cuông tại A, đường cao AH ta có:

AH2=BH.HC=9.16=144

<=>AH=√144=12((cm)

Áp dụng định lý Pytago vào tam giác vuông BHA ta có:

BA2=AH2+BH2=122+92=225

<=>BA=√225=15(cm)

Áp dụng định lý Pytago vào tam giác vuông CHA ta có:

CA2=AH2+CH2=122+162=20(cm)

Vậy AB=15cm,AC=20cm,AH=12cm

16 tháng 10 2020

XÉT tam giác ABC vuông tại A : BC2=AB2+AC2=36+64+100 

=>BC=10.

b) áp dụng tích chất đường pg trong tam giác vào tam giác abc ta có :

AB/AC=BD/DC <=> 6/8=BD/DC<=>BD/6=DC/8=K .

=> 6K=DC ; 8K=BD .

CÓ  BD+DC =BC=10

<=>6K+8K=10

<=>14K=10

<=>K=5/7 .

=>DB=5/7 . 8 = 40/7 ;DC=5/7 . 6 =30/7 .

C) TG AEDF LÀ HCN VÌ : GÓC DÈ = GÓC EAF = GÓC AFD=90'.

CHU VI VÀ DIỆN TÍCH THÌ TÍNH CẠNH EA VÀ ED THÌ RA.

20 tháng 7 2018

A B C D E F

a)  Áp dụng đinh lý Pytago ta có:

        \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)

\(\Leftrightarrow\)\(BC=10\)

Để tính góc B bn tính tỉ số lượng giác của 1 trong 2 góc sau đó tra bảng là ra đc số đo góc đó và tính đc góc còn lại

(do mk k biết dùng bảng lượng giác nên k giúp đc phần này)

b)  \(AD\)là phân giác  \(\widehat{BAC}\)

\(\Rightarrow\)\(\frac{BD}{AB}=\frac{DC}{AC}\)hay  \(\frac{BD}{6}=\frac{DC}{8}=\frac{BD+DC}{6+8}=\frac{10}{14}=\frac{5}{7}\)

suy ra:     \(\frac{BD}{6}=\frac{5}{7}\)\(\Rightarrow\)\(BD=\frac{30}{7}\)

               \(\frac{DC}{8}=\frac{5}{7}\)\(\Rightarrow\)\(DC=\frac{40}{7}\)

c)  Tứ giác  AEDF  có:  \(\widehat{A}=\widehat{F}=\widehat{E}=90^0\)

\(\Rightarrow\)Tứ giác  \(AEDF\)là hình chữ nhật