Giá trị của đa thức - 1 / 2 x 2 y 2 + 3 x y - 2 tại x = 2, y = 3 là:
A. 3 x y z - 3 x 2 + 5 x y - 1
B. x 3 y 2 + 5 - 1 , 3 y 2
C. x 2 y + x y 2 - 5 x 2 y 2 + x 3
D. x 2 y z + y 3 - x z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Đơn thức 1/2 xy^ 3 z ^2 có bậc là bao nhiêu?
A. 3 B. 4 C. 5 D. 6
Câu 2: Giá trị của đơn thức1/2 x^ 2 y tại x = 2 và y = 1 là:
A.1/2 B. 2 C. 1 D. 4
Câu 3: Nghiệm của đa thức P (x) = x 3 - 9x. là giá trị nào trong các giá trị sau?
A. 0 B. -3 C. 3 D. 0; -3; 3
Câu 4: Khi nhân hai đơn thức (-3/7xy 2 ).(-7x 2 y 2 ) được tích là:
A. -3x 2 y 4 B. 3x 3 y 4 C. -3x 3 y 4 D.-10/7x^ 3 y^ 4
Câu 5: Khi cộng ba đơn thức: 5xy 2 ; -7xy 2 ; 3xy 2 được tổng là:
A. x 3 y 6 B. xy 2 C. 15xy 2 D. - 9xy 2
Câu 6: . Đa thức P (x) = x 2 –x 3 + 2x 4 + 5 có hệ số cao nhất là:
A. 1 B. -1 C. 5 D. 2
Thay \(x=-3,y=-\dfrac{1}{2},z=3\) vào P ta có:
\(P=3\cdot\left(-3\right)\cdot\left(-\dfrac{1}{2}\right)^2-6\cdot\left(-3\right)\cdot\left(-\dfrac{1}{2}\right)+8\cdot\left(-3\right)\cdot3+\left(-3\right)\cdot\left(-\dfrac{1}{2}\right)^2-10\cdot\left(-3\right)\cdot3=6\)
Vậy:...
`P = (3+1)xy^2 - 6xy +(8-10)xz`
`= 4xy^2 - 6xy - 2xz`
Khi `x = -3; y = -1/2; z = 3` thì GTBT là:
`4 . (-3) . (-1/2)^2 - 6 .(-3) . (-1/2) + 2 . (-3) . 3`
`= -3 - 9 - 18`
`= -30`.
BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4
MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2
=>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2
=>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2
b,A=y(y+1)(y+2)(y+3)
=>A =[y(y+3)] [(y+1)(y+2)]
=>A=(y2+3y) (y2+3y+2)
Đặt X=y2+3y+1
=>A=(X+1)(X-1)
=>A=X2-1
=>A=(y2+3y+1)2-1
MÀ (y2+3y+1)2>=0 với mọi giá trị của y
=>(y2+3y+1)2-1>=-1
Vậy GTNN của Alà -1
c,B=x3+y3+z3-3xyz
=>B=(x3+y3)+z3-3xyz
=>B=(x+y)3-3xy(x+y)+z3-3xyz
=>B=[(x+y)3+z3]-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)
a: \(A=31x^2y^3-2xy^3+\dfrac{1}{4}x^2y^2+2\)
\(B=2xy^3+\dfrac{3}{4}x^2y^2-31x^2y^3-x^2-5\)
P=\(A+B=x^2y^2-x^2-3\)
\(A-B=62x^2y^3-4xy^3-\dfrac{1}{2}x^2y^2+x^2+7\)
b: Khi x=6 và y=-1/3 thì \(P=\left(6\cdot\dfrac{-1}{3}\right)^2-6^2-3=4-36-3=1-36=-35\)
B=(xyz)+(xyz)^2+(xyz)^3+...+(xyz)^100
=(-1)+1+(-1)+1+...+(-1)+1
=0
a) \(x^2-2xy-4z^2+y^2=\left(x-y\right)^2-4z^2=\left(x-y-2z\right)\left(x-y+2z\right)=\left(6+4-2.45\right)\left(6+4+2.45\right)=-8000\)b) \(3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48=3\left(x^2+4x-21\right)+\left(x^2-8x+16\right)+48=4x^2+4x+1=\left(2x+1\right)^2=\left(2.0,5+1\right)^2=4\)
a: Ta có: \(x^2-2xy+y^2-4z^2\)
\(=\left(x-y\right)^2-\left(2z\right)^2\)
\(=\left(x-y-2z\right)\left(x-y+2z\right)\)
\(=\left(6+4-2\cdot45\right)\left(6+4+2\cdot45\right)\)
\(=-8000\)
b: Ta có: \(3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)
\(=3\left(x^2+4x-21\right)+\left(x-4\right)^2+48\)
\(=3x^2+12x-63+x^2-8x+16+48\)
\(=2x^2+4x+1\)
\(=2\cdot\dfrac{1}{4}+4\cdot\dfrac{1}{2}+1\)
\(=\dfrac{7}{2}\)
`A = x^2y - 7xy = xy(x-7)`
Khi `x = 3; y = -1/2` thì GTBT là:
`3.(-1/2)(3-7) = -3/2 . -4 = 6`.
Chọn B