Vật sáng AB cao 4cm, đặt vuông góc với trục chính của một thấu kinh hội tụ, cách thấu kính 10cm, cho một ảnh thật cao 2cm. Tìm tiêu cự của thấu kính.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên hình vẽ, xét hai cặp tam giác đồng dạng:
ΔA’B’F’ và ΔOIF’; ΔOAB và ΔOA’B’.
Từ hệ thức đồng dạng ta có:
Vì AB = OI (tứ giác BIOA là hình chữ nhật)
Từ (1) và (2) suy ra:
Vậy ảnh cách kính 10cm và cao 4cm.
Đáp án: A
Ảnh cao gấp 4 lần vật nên khoảng cách từ ảnh đến thấu kính gấp 4 lần khoảng cách từ vật đến thấu kính
=> d' = 40 cm
Vì ảnh là ảnh ảo.
Áp dụng công thức thấu kính hội tụ với ảnh ảo ta có:
Khoảng cách từ ảnh đến thấu kính là:
Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow d'=\dfrac{d.f}{d-f}=\dfrac{8.4}{8-4}=8\left(cm\right)\)
Chiều cao của ảnh:
Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Rightarrow h'=\dfrac{d'.h}{d}=\dfrac{8.2}{8}=2\left(cm\right)\)
Ta có hình vẽ 2, xét tam giác đồng dạng OAB và OA’B’ ta được công thức:
Mặt khác d’ = 2d/4 = 2.10/4 = 5(cm)
Vậy f/(5-f ) = 2 ⇔ f = 10 – 2f => f = 10/3 (cm)