K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2015

Nguyễn Minh Anh ở trường mình mà sao ko biết nhỉ

15 tháng 5 2016

a) đề thiếu

15 tháng 5 2016

Đặt n2 + 2006 = a2 (a thuộc Z)

=> 2006 = a2 - n2 = (a - n)(a + n) (1)

Mà (a + n) - (a - n) = 2n chia hết cho 2

=>a + n và a - n có cùng tính chẵn lẻ

+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)

+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)

Vậy không có n thỏa mãn n2+2006 là số chính phương

b)Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n = 3k + 1 hoặc n = 3k + 2 (k$$N*)

+) n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số 

+) n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 12k + 2010 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số

Vậy n2 + 2006 là hợp số

21 tháng 5 2016

a) Giả sử n2

(a+n) = 2006 (*) 

+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của (*) là số lẻ nên không thỏa mãn (*) 

+ Nếu a,n cùng tính chẵn hoặc lẻ thì (a-n)2 và (a+n) 2 nên vế trái chia hết cho 4 và vế phải không chia

hết cho 4 nên không thỏa mãn (*) 

Vậy không tồn tại n để n2

b) n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2

+ 2006 = 3m+2007= 3( m+669) chia hết cho 3.

Vậy n2

+ 2006 là hợp số.

+ 2006 là số chính phương khi đó ta đặt n2

+ 2006 là số chính phương. 

21 tháng 5 2016

Đã biết câu trả lời mà còn hỏi nữa con rảnh ruồi kia -__-

17 tháng 11 2015

Tham khảo câu hỏi tương tự nhé bạn .

Tick tớ đc chứ 

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

21 tháng 12 2018

Có thể nêu cách giải giúp mik đc ko?

30 tháng 12 2015

n=9

p=180

tick nha

2 tháng 11 2023

Bạn chỉ cần cho \(n\) lẻ thì \(p^{n+1}\) chính phương rồi nhé.

Đặt \(p^n+144=a^2\left(a\in N\right)\)

\(\Rightarrow p^n=\left(a-12\right)\left(a+12\right)\)

Ta thấy : \(a-12+a+12=2a⋮2\)

\(\Rightarrow\left(a-12\right)\left(a+12\right)⋮2\)

\(\Rightarrow p^n⋮2\) mà $p$ nguyên tố \(\Rightarrow p=2\)

Khi đó ta có : \(2^n=\left(a-12\right)\left(a+12\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2^x=a-12\\2^y=a+12\end{matrix}\right.\) với $x+y=a; x,y \in N$,  \(y>x\)

\(\Rightarrow2^y-2^x=24\Rightarrow2^x\left(2^{y-x}-1\right)=24\)

Rồi bạn xét các TH để tìm ra giá trị đề bài nhé! Đến đây dễ rồi.