Cho tam giác ABC đều . H là trực tâm. kẻ đường cao AD
Điểm M thuộc BC . từ M kẻ ME, MF vuông góc với AB,AC
I là trung điểm của AM.cm
a)DEIF là hình thoi
b) đường thẳng HM đi qua tâm đối sứng của DECF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔDCB có
M là trung điểm của BC
H là trung điểm của CD
Do đó: HM là đường trung bình của ΔDCB
Suy ra: HM//DB
1) Xét tam giác DBC có:
H là trung điểm của DC ( HD=HC )
M là trung điểm của BC ( gt )
=> HM là đường trung bình của tam giác DBC
=> HM//BD
2) Xét tam giác ABC có:
EF⊥HM(gt)
Mà HM//BD(cmt)
=> EF⊥BD
=> HE⊥BD
Ta có: BA⊥CA ( H là trực tâm tam giác ABC)
Mà \(E\in AB,D\in HC\)
=> BE⊥HD
Xét tam giác HBD có
BE⊥HD (cmt)
HE⊥BD (cmt)
Mà HE cắt BE tại E
=> E là trực tâm tam giác HBD
Gọi giao điểm HM với DC là P; giao điểm HN với BC là E
a) Vì HP vuông góc với IK, mà IK//CD nên DC vuông góc với HP
=> HP và CE là các đường cao của ▲HCN cắt nhau ở M
=> M là trực tâm ▲HCN , nên NM là đường cao thứ 3 hay NM vuông góc với HC
Lại có HC vuông góc với AB (CH là đường cao)
=> NM//AB
Xét ▲BDC có M là trung điểm BC và NM//BD nên ND = NC
b) Do IK//CD nên theo Talet: IH/DN = IK/NC (= AI/AN)
=> IH/IK = ND/NC = 1 (Vì ND = NC). Vậy IH = HK
\(a,\left\{{}\begin{matrix}DH=HC\\BM=MC\end{matrix}\right.\Rightarrow HM\) là đường trung bình tam giác BDC
\(\Rightarrow HM//BD\Rightarrow BD\perp HE\left(HM\perp HE\right)\\ \Rightarrow HE.là.đường.cao.\Delta BDH\left(1\right)\)
Ta có H là trực tâm nên CH hay CD là đường cao tam giác ABC
\(\Rightarrow CD\perp BA\Rightarrow DH\perp BE\\ \Rightarrow BE.là.đường.cao.\Delta BDH\left(2\right)\)
Ta có \(BE\cap HE=E\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow E.là.trực.tâm.\Delta BDH\)
\(a,\left\{{}\begin{matrix}DH=HC\\BM=MC\end{matrix}\right.\Rightarrow HM\) là đtb tam giác BDC
\(\Rightarrow HM//BD\)
\(b,HM//BD\left(cm.trên\right)\\ \Rightarrow BD\perp HE\left(1\right)\left(HM\perp HE\right)\)
Lại có H là trực tâm nên CH là đường cao tam giác ABC
\(\Rightarrow CH\perp AB\Rightarrow HD\perp BE\left(2\right)\)
Mà \(DE\cap BE=E\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow E\) là trực tâm tam giác HBD
\(c,\) H là trực tâm nên BH là đường cao
\(\Rightarrow BH\perp AC\left(4\right)\)
Mà E là trực tâm nên DE là đường cao
\(\Rightarrow DE\perp BH\left(5\right)\\ \left(4\right)\left(5\right)\Rightarrow DE//AC\)
\(d,\left\{{}\begin{matrix}DH=HC\\\widehat{DHE}=\widehat{CHF}\left(đối.đỉnh\right)\\\widehat{DEH}=\widehat{HFC}\left(so.le.trong\right)\end{matrix}\right.\Rightarrow\Delta DHE=\Delta CHF\left(g.c.g\right)\\ \Rightarrow EH=HF\)
là s , nếu ai biết lm thì giải hộ mk nha , mk cám ơn