K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2018

Đáp án là B

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

Hình vẽ:

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

 

Lời giải:

1.

Xét tam giác $BHA$ và $BAC$ có:

$\widehat{B}$ chung

$\widehat{BHA}=\widehat{BAC}=90^0$

$\Rightarrow \triangle BHA\sim \triangle BAC$ (g.g)

$\Rightarrow \frac{BH}{BA}=\frac{BA}{BC}\Rightarrow BA^2=BH.BC$

Tương tự, ta cũng cm được: $\triangle CHA\sim \triangle CAB$ (g.g)

$\Rightarrow CA^2=CH.CB$

Do đó:

$CA^2+CB^2=BH.BC+CH.CB=BC(BH+CH)=BC.BC=BC^2$ 

(đpcm)

b. Xét tam giác $BHA$ và $AHC$ có:

$\widehat{BHA}=\widehat{AHC}=90^0$

$\widehat{HBA}=\widehat{HAC}$ (cùng phụ $\widehat{BAH}$)

$\Rightarrow \triangle BHA\sim \triangle AHC$ (g.g)

$\Rightarrow \frac{BH}{AH}=\frac{HA}{HC}$

$\Rightarrow AH^2=BH.CH$

c.

$\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{AB^2+AC^2}{AB^2.AC^2}$

$=\frac{BC^2}{AB^2.AC^2}=(\frac{BC}{AB.AC})^2=(\frac{BC}{2S_{ABC}})^2$

$=(\frac{BC}{AH.BC})^2=\frac{1}{AH^2}$

.d. Hiển nhiên theo công thức diện tích. 

 

13 tháng 8 2019

Ban chua hoc He thuc luong trong tam giac vuong va sin,cos ak ?

13 tháng 8 2019

Neu hoc roi thi chi can tu suy luan qua tam giac dong dang va cac ti so lien quan la xong

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

Suy ra: \(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BC\cdot BH\)(đpcm)

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

b: ΔABC đồng dạng với ΔHAC

=>CA/CH=CB/CA

=>CA^2=CH*CB

16 tháng 11 2018

Hướng dẫn:

∆ ABC ∼  ∆ HBA nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra HB = 4/5HA = 48/5 = 9,6. Chọn B.