K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) Xét tam giác ABC vuông tại A có ∠B = 30 0 , AC = 6 cm:

AB = AC.cotgB = 6.cotg  30 0  = 2 3 (cm)

AC = BC.sin⁡B ⇒ Đề kiểm tra Toán 9 | Đề thi Toán 9

Tam giác ABC vuông tại A có AH là đường cao nên

AH.BC = AB.AC ⇒ Đề kiểm tra Toán 9 | Đề thi Toán 9

Bài 1: 

a: BC=30cm

AH=14,4(cm)

BH=10,8(cm)

Câu 1.Cho tam giác ABC có AB = 24 cm, AC = 30 cm. Trên cạnh AB và AC lần lượtlấy các điểm M và N sao cho AM = 8 cm, AN = 10 cm.1.Chứng minh MN//BC2. Tính MN biết BC = 36 cmCâu 2. Cho tam giác ABC có AB = 10 cm, AC = 20 cm. Trên cạnh AC đặt đoạn thẳngAD = 5 cm. Chứng minh ABD \= ACB [Câu 3. Cho tam giác ABC vuông tại A và phân giác AD (D ∈ BC). Biết AB = 15 cm,AC = 20 cm. Tính DB và DC.Câu 4.Cho tam giác ABC vuông tại A (AB < AC) và...
Đọc tiếp

Câu 1.Cho tam giác ABC có AB = 24 cm, AC = 30 cm. Trên cạnh AB và AC lần lượt
lấy các điểm M và N sao cho AM = 8 cm, AN = 10 cm.
1.Chứng minh MN//BC
2. Tính MN biết BC = 36 cm
Câu 2. Cho tam giác ABC có AB = 10 cm, AC = 20 cm. Trên cạnh AC đặt đoạn thẳng
AD = 5 cm. Chứng minh ABD \= ACB [
Câu 3. Cho tam giác ABC vuông tại A và phân giác AD (D ∈ BC). Biết AB = 15 cm,
AC = 20 cm. Tính DB và DC.
Câu 4.Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH.
1.  Chứng minh BA2 = BH.BC.
2.  Tính độ dài cạnh AC khi biết AB = 30 cm, AH = 24 cm.
3.  Trên cạnh AC lấy điểm M sao cho CM = 10 cm, trên cạnh BC lấy điểm N sao cho CN
= 8 cm. Chứng minh tam giác CMN vuông.
4.  Chứng minh CM.CA = CN.CB
Câu 5. (7đ) Cho tam giác ABC nhọn và đường cao AH. Kẻ HI ⊥ AB và HK ⊥ AC.
1. Chứng minh AH2 = AI.AB.

2. Chứng minh 4AIK v 4ACB

3.  Đường phân giác của góc AHB cắt AB tại E. Biết EB/ AB = 2/ 5 . Tính tỉ số BI /AI
Câu 6.  Cho tam giác AOB cân tại O (O <b 90◦
) và hai đường cao AD, BE. Đường vuông
góc với OA tại A cắt tia OB tại C. Chứng minh:
1.  ED//AB.
2.  OB2 = OE.OC
3. AB là đường phân giác của DAC \.
4. (Chứng minh BD.OA = BC.OE

giúp mình với nhé :( cần gấp

0
14 tháng 4 2021

A B C 6 8 H E D

a, Xét tam giác ABC và tam giác HBA ta có : 

^BAC = ^AHB = 900

^B _ chung 

Vậy tam giác ABC ~ tam giác HBA ( g.g ) 

c, tam giác ABC vuông tại A, có đường cao AH 

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow BC^2=36+64=100\Rightarrow BC=10\)cm 

Ta có : \(\dfrac{AC}{AH}=\dfrac{BC}{AB}\)( cặp tỉ số đồng dạng ý a )

\(\Rightarrow\dfrac{8}{AH}=\dfrac{10}{6}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}\)cm 

d, phải là cắt AC nhé, xem lại đề nhé bạn 

 

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

a: AH=15cm

\(AB=5\sqrt{34}\left(cm\right)\)

31 tháng 3 2022

a, Xét ΔHBA và ΔABC có :

\(\widehat{H}=\widehat{A}=90^0\)

\(\widehat{B}:chung\)

\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)

\(\Rightarrow AB.AC=BC.AH\)

b, Xét ΔABC vuông A, theo định lý Pi-ta-go ta được :

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)

Ta có : \(\Delta HBA\sim\Delta ABC\left(cmt\right)\)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)

hay \(\dfrac{12}{20}=\dfrac{AH}{16}\)

\(\Rightarrow AH=\dfrac{12.16}{20}=9,6\left(cm\right)\)