Phần tự luận
Nội dung câu hỏi 1
Cho biểu thức:
P = x + 1 x + 2 + 3 x + 2 x - 4
Q = x - 5 x + 6 x + 2 x với x > 0, x khác 4
a) Rút gọn biểu thức P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Đề bài không có b. Bạn coi lại đề.
2.
\(B=\left[\frac{1}{(\sqrt{x}-2)(\sqrt{x}+2)}-\frac{1}{(\sqrt{x}+2)^2}\right]-(\sqrt{x}+2)\)
\(=\frac{(\sqrt{x}-2)(\sqrt{x}+2)-(\sqrt{x}-2)^2}{(\sqrt{x}-2)^2(\sqrt{x}+2)^2}-(\sqrt{x}+2)\)
\(=\frac{4(\sqrt{x}-2)}{(\sqrt{x}-2)^2(\sqrt{x}+2)^2}-(\sqrt{x}+2)=\frac{4}{(\sqrt{x}-2)(\sqrt{x}+2)^2}-(\sqrt{x}+2)\)
\(=\frac{4}{(x-4)(\sqrt{x}+2)}-(\sqrt{x}+2)\)
\(M=\left(\frac{1+x}{1-x}-\frac{1-x}{1+x}-\frac{4x^2}{x^2-1}\right):\frac{4\left(x^2-3\right)}{x\left(1-x\right)}\)
\(=\left(\frac{1+x}{1-x}-\frac{1-x}{1+x}+\frac{4x^2}{1-x^2}\right).\frac{x\left(1-x\right)}{4\left(x^3-3\right)}\)
\(=\left(\frac{\left(1+x\right)^2}{\left(1-x\right)\left(1+x\right)}-\frac{\left(1-x\right)^2}{\left(1+x\right)\left(1-x\right)}+\frac{4x^2}{\left(1+x\right)\left(1-x\right)}\right).\frac{x\left(1-x\right)}{4\left(x^3-3\right)}\)
\(=\left(\frac{\left(1+x\right)^2-\left(1-x\right)^2+4x^2}{\left(1-x\right)\left(1+x\right)}\right).\frac{x\left(1-x\right)}{4\left(x^3-3\right)}\)
\(=\frac{\left(1+x+1-x\right)\left(1+x-1+x\right)+4x^2}{\left(1-x\right)\left(1+x\right)}.\frac{x\left(1-x\right)}{4\left(x^3-3\right)}\)
\(=\frac{2.2x+4x^2}{\left(1+x\right)}.\frac{x}{4\left(x^3-3\right)}\)
\(=\frac{4x+4x^2}{\left(1+x\right)}.\frac{x}{4\left(x^3-3\right)}\)
\(=\frac{4x\left(1+x\right)}{\left(1+x\right)}.\frac{x}{4\left(x^3-3\right)}\)
\(=\frac{x}{1}.\frac{x}{\left(x^3-3\right)}\)
\(=\frac{x^2}{x^3-3}\)
a) Với x > 0; x ≠ 4,ta có: